———
NATURAL

Natural

User's Guide
Version 3.1.6 for Mainframes

f; softwARE ARG

This document applies to Natural Version 3.1.6 for Mainframes and to all subsequent releases. Specifications
contained herein are subject to change and these changes will be reported in subsequent release notes or new
editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

User’s Guide for Mainframes - Overview

Table of Contents

User’s Guide for Mainframes - Overview
User’s Guide for Mainframes - Overview.
Fundamentals
Fundamentals .
Components of Natural
Invoking Natural .
Terminating Natural .
Terminating an Online Sessmn
Terminating a Batch Sessian
Using the ENTER Key
Online Help System .
Help on Natural System Messages
Navigating within Natural .
Invoking a Function from a Menu
Invoking a Function with a Command
Leaving a Function.
PF Keys .
Main Natural Menus .
Main Menu
Development Functlons
Changing the Library
Programming Modes
Development Environment Settmgs
Maintenance and Transfer Utilities .
Debugging and Monitoring Utilities .
Example Libraries .
Other Products.
Natural Editors
Terminal Commands.
Asterisk Notation. .
Tutorial - Getting Started with Natural
Tutorial - Getting Started with Natural
Session 1 - Creating a Program and a Map
Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9.
Step 10
Step 11
Step 12
Step 13
Step 14
Step 15
Step 16
Step 17
Step 18
Step 19
Session 2 - Creatlng a Local Data Area

Copyright © Software AG 2002

Table of Contents

ONNOODOUTOORARPRERPRA,WWWWNNNREPRE

Table of Contents User’s Guide for Mainframes - Overview

Stepl L. L3
Step2 L. 40
Step3 L0 1
Stepd . . . L L. Lo 42
Step5 43
Step6 L. L. 43
Step7 L L. 4a
Step8 L L. s, 4a
Step 9 P 1)
Step 10 . - 1)
Session 3 - Creating a Global Data Area v
Stepl L oL e
Step2 Lo e
Step3 48
Stepd4 L L4
Step5 50
Step6 50
Step 7 e - V24
Session 4 Creatlng an External Subroutlne 53
Step2 . 53
Step2 L. b
Step3 L L. b

Y (T R 4
Step 5 b6
Session 5 Ed|t|ng a Map e - Y 4
Step2 58
Step2 L L8
Step3 L. e
Stepd4 L L. L.
Step5 L L L. B2
Step6 . b4
Step7 . b5
Step8 66
Step 9 P)
Step 10 P o Y 4
Step11. L. bY
Step12. B
Session 6 - Invoking a Subprogram. 1710
Step2 L.
Step2 L ... L.
Step3 L. L. L. ...
Stepd4d L0 L L2
Step5 L0 oL T2
Step6 e T2
Step7 Lo T2
Step8 L. T3
Step 9 Y <
Step 10 P £
Step11. . . e £ 6
Tutorial - Using the Map Ed|tor e 4
Tutorial - Using the Map Editor71
Components of the Map Editor. 178
Invoking the Map Editor . . Y 4
Session 1 - Designing a Map, Line and F|eld Commands 80
Session 2 - ProcessingRules 94
Session 3 - Extended Field Editng. 100

ii Copyright © Software AG 2002

User’s Guide for Mainframes - Overview Table of Contents

Session 4 - INPUT USING MAP . . . 0 [
Session 5 - WRITE USING MAP, Fields from a Vlew 108
Designing User Interfaces - Overview 114
Designing User Interfaces - Overview. 114
Screen Design. 115
Screen Design115
Control of Function- Key L|nes Termlnal Command %Y 116
Format of Function-Key Lines 116
Positioning of Function-Key Lines 117
Cursor-Sensitivity . . Y AR
Control of the Message Line - Termlnal Command %M I 240
Positioning the Message Line 120
Message Line Protecton. 121
Message Line Color. . . e 2
Assigning Colors to Fields - Termlnal Command %— e 224
Outlining - Terminal Command %D=B 124
Statistics Line/Infoline - Terminal Command %X 124
Statistics Line 124
Infoline . 126
Windows . . e 2
What is a Wlndow’? . e VY 4
DEFINE WINDOW Statement e 72
INPUT WINDOW Statement.11
Standard/Dynamic LayoutMaps 135
Dynamic LayoutMaps135
Multilingual User Interfaces 136
Language Codes . . P <16
Defining the Language of a Natural Object S RS ¥ 4
Defining the User Language. 138
Referencing Multilingual Objects. 139
Programs . 140
Error Messages . . X0
Edit Masks for Date and T|me F|elds e 14
Skill-Sensitive User Interfaces14
Dialog Design . 143
Dialog Design . . X
Field-Sensitive Processmg . 7 X
*CURS-FIELD and POSield- name) 7 X
Simplifying Programming 146
System FunctonPOS 146
Line-Sensitive Processingl
System Variable *CURS-LINE 147
Column-Sensitive Processing 148
System Variable *CURS-COL 148
Processing Based on FunctionKeys 149
System Variable *PF-KEY . . . S ke
Processing Based on Function-Key Names . 110
System Variable *PF-NAME 1k0
Processing Data Outside an Active Wmdow . oY
System Variable*COM 1=
Example Usage of*cOM 151
Positioning the Cursor to *COM - %T* Terminal Command 152
Copying Data from a Screen . . £ 57
Terminal Commands %CS and %CC 154
Selecting a Line from Report Output for further Processmg Y
Statements REINPUT/REINPUT FULL. 156

Copyright © Software AG 2002 iii

Table of Contents

Object-Oriented Processing
Natural Command Processor.

Editors - General Information

Editors - General Information.

Object Names.
Split-Screen Mode.
Split-Screen Commands.
Editor Profile
General Information .
Additional Options
Editor Defaults .
General Defaults
Color Definitions
Direct Commands
User Exit USR0070P.
Exit Profile Maintenance.

Program Editor

Program Editor

Invoking the Program Edrtcxr
Top Information Line
Bottom Information Line
Editor Command Line .
Editing a Program .
Multiple Functions .
Dynamic Conversion from Lower to Upper Case .
Editor Commands .
Editor Commands for Posrtronrng
Line Commands .
Special PF-Key Functions .
Cursor-Sensitive Commands
The SCAN Commands .
The SPLIT Command .
The EDIT and LIST System Commands .
The Exit Function . .

Data Area Editor

Data Area Editor.

Invoking the Data Area Edrtor .

Top Information Line

Bottom Information Line

Editor Command Line .

Editing a Data Area

Editor Commands .

Line Commands
Edit Fields .
Special Commands Avarlable wrthrn the Ed|t F|elds Functton .
The ".E" Line Command with Control Variables

The Exit Function .

Defining Globally Unique IDs in the Local and Global Data Area Edrtors .

Map Editor

Map Editor

Components of the Map Edrtor
Summary of Map Creation .
Step 1
Step 2
Step 3
Step 4

User’s Guide for Mainframes - Overview

159
159
160
160
161
162
162
164
164
166
167
168
169
170
171
171
172
172
172
173
173
173
173
173
174
175
178
179
181
182
182
182
183
183
184
184
184
185
185
185
186
188
190
193
195
195
196
196
197
197
198
199
199
199
199
199

Copyright © Software AG 2002

User’s Guide for Mainframes - Overview

Invoking the Map Editor
Overview of Functions
Initializing a Map
Delimiters
Format .
Context .
Filler Characters
Editing a Map .
Commands and Functron Keys for Posrtronrng
Line Commands.
Field Commands
Defining Map Fields
Defining Fields Directly on the Screen

Selecting Fields from a User View or Data Defrnrtron .

Using System Variables in a Map Definition

Extended Field Editing.

HE Parameter Syntax:
Post Assignment Function .
Array and Table Definition .

Array Definition .

Table Definition .

Processing Rules . .
Field-Related Processing Rules . .
Function-Key-Related Processing Rules .
Processing Rule Editing .

Copyright © Software AG 2002

Table of Contents

200
202
206
207
208
210
211
212
213
214
216
218
218
219
220
221
224
225
226
226
230
234
234
235
236

User’s Guide for Mainframes

- Overview User’s Guide for Mainframes - Overview

User’'s Guide for Mainframes - Overview

This documentation introduces you to the use of Natural on mainframe computers. It also contains reference
information on Natural editors.

Note that the Natural system commands are described Matlieal Command Referendecumentation.
System Commands are used to perform various system-related activities for example, saving a program,
invoking an editor, logging on to another library.

@ Fundamentals

Tutorial - Getting
Started with Natural

Tutorial - Using the
Map Editor

Designing User
Interfaces

Editors - General
Information

Program Editor

Data Area Editor

e © ¢ ¢ ¢ ¢ ©

Map Editor

Describes how to invoke and how to terminate a Natural session, online help, the
main menus, and various other aspects of how to find your way in the Natural
system; it also provides an overview of the Natural editors, system commands
and terminal commands.

Contains a series of tutorial sessions which introduce you to some of the basics of
Natural programming.

Contains a series of tutorial sessions on how to use the Natural map editor for the
creation of maps, processing rules and helproutines.

Provides information on components of Natural which you can use to design the
user interfaces of your applications.

Contains information that applies to all three Natural editors: the program editor,
the data area editor and the map editor.

Describes the program editor, which is used to create and maintain Natural
programs, subprograms, subroutines, helproutines, copycodes and texts.

Describes the data area editor, which is used to create and maintain Natural local
data areas, global data areas and parameter data areas.

Describes the data area editor, which is used to create and maintain Natural maps
and help maps.

Copyright © Software AG 2002 1

Fundamentals Fundamentals

Fundamentals

This section covers the following topics:

Components of Natural
Invoking Natural
Terminating Natural
Using the ENTER Key
Online Help System
Navigating within Natural
Main Natural Menus
Natural Editors

Terminal Commands
Asterisk Notation

Components of Natural

Natural is a complete environment for application development, offering all the functions you need to create an
application:

e the Natural programming language;

e editors to create and maintain programs, maps, data areas and the other types of programming objects that
make up a Natural application;

® a utility to create and maintain error messages to be issued by an application;

various utilities for online testing and debugging of individual programs as well as entire applications;

e several other utilities for various purposes which you will find helpful when developing an application with
Natural.

All components of an application can be created and compiled online. No batch or asynchronous compilation or
link steps are required to create a Natural application.

With Natural applications you can access data that may be stored in Adabas databases as well as in a wide
variety of other database systems.

2 Copyright © Software AG 2002

Fundamentals Invoking Natural

Invoking Natural

Natural may be invoked for online or batch mode execution.

The way you invoke Natural depends on the specific TP monitor environment at your site. Ask your Natural
administrator how to invoke Natural.

If Natural Security is installed, the access to some libraries as well as the use of some functions may be
restricted. Ask your Natural administrator for details.

Terminating Natural

® Terminating an Online Session
e Terminating a Batch Session

Terminating an Online Session
A Natural online session can be terminated by any of the following:

pressing PF3 or entering a period (.) in the command line of the Main Menu,
entering the system command FIN,

pressing CLEAR or an equivalent key,

executing a Natural program which contains a TERMINATE statement.

The method of session termination may also be modified by the Natural administrator.

Terminating a Batch Session
A Natural batch mode session will be terminated when one of the following is encountered during the session:

® a FIN command in the input dataset,
e an end-of-input condition in the input dataset,
® a TERMINATE statement in a Natural program which is being executed.

Copyright © Software AG 2002 3

Using the ENTER Key Fundamentals

Using the ENTER Key

To perform a particular Natural action, you enter the appropriate function code, command, etc., and then press
ENTER.

So, if this documentation tells you to "enter a function code", this means, "type in the function code and press
ENTER".

If a function requires that you press another key, this will be explicitly mentioned in this documentation.

Online Help System
Natural offers several types of online help:

e FEach menu has a help option which can be invoked by entering a question mark (?) or by pressing the
appropriate PF key as indicated in the PF-key lines on the screen (usually PF1).

® Each editor provides help information, which can be invoked from within the editor.

e When an error message is displayed, there is help available which provides a detailed explanation of the
messagetielp on Natural System Messages

When you enter the system command HELP or a question mark (?), or press the PF key to which the function
"Help" is assigned, this will invoke the help system from which you can select the help you want.

To get information on a specific statement or system command, you enter in the command line HELP followed
by the name of the statement/command (for example, HELP STOW).

Some Natural screens provide field-specific help, which you get by entering a question mark (?) in a field.

With the LASTMSG command, you can display additional information about the error situation which has
occurred last. SEASTMSG in the Natural Command Reference documentation.

Help on Natural System Messages
The system messages issued by Natural begin with NAT followed by a four-digit nommiper
For each Natural system message, theresi®g textand dong text

® Theshort textis the one-line message which is displayed when the error occurs.
® Thelong textis an extended explanation of the error and the action to be taken.

To display the long text, you place the cursor in the message line (that is, the line in which the short text of the
message is being displayed) and press the help key (by default PF1). Or you enter the system command "HELP
nnni' or "? nnnri' (nnnnbeing the error number).

For further information on help for error messages, see the system comdikaRdh the Natural Command
Reference documentation.

4 Copyright © Software AG 2002

Fundamentals Navigating within Natural

Navigating within Natural

Invoking a Function from a Menu
Invoking a Function with a Command
Leaving a Function

°
°
°
® PF Keys

You can invoke a Natural function either by selecting it from a menu or by entering a command.

Invoking a Function from a Menu
Every Natural menu screen offers you a list of functions.

® On some menu screens, there is an input field before each function listed. To invoke a function, mark the
corresponding input field - either with the cursor or with any character.

® On some menu screens, a one-letter code is displayed before each function listed. To invoke a function,
enter the corresponding code in the Code field provided on the screen.

Invoking a Function with a Command

All Natural screens provide a "command line". The command line is usually above the PF-key lines and looks as
follows:

Command ===>

In this line, you can enter a Natural system command. With a system command, you can invoke a function
directly, instead of having to "work your way" towards it along a number of menu screens.

You can also enter a system command in response to a NEXT or MORE prompt in the same way as in the
command line of a menu screen.

If no menu screen is displayed, you will get a NEXT prompt, indicating that Natural is awaiting your next input.

During the execution of a program, Natural will display a MORE prompt to inform you that additional output is
available. To display the additional output, you press ENTER. If you enter a system command in response to the
MORE prompt, the program that is being executed will be stopped and the system command will be executed.

The input of Natural commands (system, line, editor, etoti€ase-sensitive.

For further information, see tidatural Command Referendecumentation.

Copyright © Software AG 2002 5

Leaving a Function Fundamentals

Leaving a Function

To leave a Natural function, you enter a period (.) or press PF3 or PF12 (see below).

PF Keys

By default, the following functions are assigned to the following keys throughout Natural:

Key | Function | Explanation

PF1 |Help Invokes the online help system.
PF2 |Menu Invokes the Main Menu.
PF3 | Exit Leaves a function and applies the changes made previpusly.

PF12 Canc Leaves a function and cancels the changes made previously.

6 Copyright © Software AG 2002

Fundamentals Main Natural Menus

Main Natural Menus

Main Menu

Development Functions

Changing the Library

Programming Modes

Development Environment Settings
Maintenance and Transfer Utilities
Debugging and Monitoring Utilities
Example Libraries

Other Products

Main Menu
When you invoke Natural, the Main Menu will be displayed.

If you get a NEXT or MORE prompt instead of the Main Menu, enter the system command MAINMENU. The
Natural Main Menu will then be displayed.

16:50:53 Fkkk NATURAL *ve* 2001-01-30
User SAG - Main Menu - Library SYSTEM

Function

_ Development Functions

_ Development Environment Settings
__ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_Help

_ Exit NATURAL Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Copyright © Software AG 2002 7

Main Menu

Fundamentals

From the Main Menu, you can select one of the following functions:

Function

Explanation

Development
Functions

Invokes a menu from which you can select various functions used to create and

maintain programs, maps, data areas and the other components that make up & Natural

application.

Development
Environment Settings

Invokes a menu from which you can select various functions which allow you to
display and modify various settings that affect your Natural session.

Maintenance and
Transfer Utilities

Invokes a menu from which you can select various functions used to create ang
maintain certain objects or transfer them to another environment.

Debugging and
Monitoring Utilities

Invokes a menu from which you can select various functions used to monitor yg
Natural applications and locate errors in their processing flow.

Example Libraries

Invokes a menu from which you can select various libraries containing example
programs and user exits.

Other Products

Invokes a menu from which you can invoke several other Software AG products.

The position and color of the message line and PF-key lines on the main menu and its subordinate menus can be
changed with the user exit USR2003 (which is provided in the library SYSEXT).

Copyright © Software AG 2002

Fundamentals Development Functions

Development Functions

When you select "Development Functions" on the Natural Main Menu, the Development Functions menu is
displayed:

16:51:14 wekx NATURAL *rxsx 2001-01-30
User SAG - Development Functions - Library SYSTEM
Mode Structured
Work area empty
Code Function

Create Object

Edit Object

Rename Object
Delete Object
Execute Program

List Object(s)

List Subroutines Used
Help
Exit

N EXOXxomMmO

Code .. _ Type.._
Name ..

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

The functions listed on this menu are some of the functions you will need most frequently when you develop an
application with Natural.

Copyright © Software AG 2002 9

Development Functions Fundamentals

You can select a function from the Development Functions menu in three ways:

e Input Fields

10

You can enter the corresponding function code in the Code field.

To perform a function on a programming object which already exists, you enter the desired function code in
the Code field and the name of the programming object in the Name field.

Some functions require that, in addition to entering the corresponding function code in the Code field, you
enter an object type in the Type field. If you fail to do so, a window will automatically be displayed from
which you can select an object type.

Once you are familiar with the object type codes displayed in the window, you can enter them directly in
the Type field on the menu.

The various object types are described in the se€tijact Typeof the Natural Programming Guide.

If you know the name of the object you wish to deal with, you can enter it in the Name field (without
having to enter any Type).

If you invoke the function "Edit Object" or "List Object(s)" without specifying a name or object type, the
current contents of the source work area will be displayed.

PF Keys
You can press a PF key to invoke a function.
The PF-key lines at the bottom of the screen indicate which function is assigned to which key.

Command Line

You can enter a Natural system command in the command line as described earlier under in the section
Invoking a Function with a Command

In general, the format of the commands corresponds to the Code/Name sequence. For example, to edit an
existing program named PROGX, you would enter "E" in the Code field and PROGX in the Name field.
The equivalent system command to be entered in the Command line would be EDIT PROGX.

For further information, see tidatural Command Referendecumentation.

Copyright © Software AG 2002

Fundamentals

Development Functions

The Development Functions menu provides the following functions:

Function

Explanation

Create Object

With this function, you can create a new Natural programming object (program, map, data

area, etc).

You have to specify the type and the name of the object to be created. The appropriat
will then be invokedprogram editgrmap editoy or data area editor

e editor

Edit Object

With this function, you can modify the source code of an existing programming object.

You have to specify the name of the object to be edited. The appropriate editor will thg
invoked:program editarmap editor ordata area editor
If you do not remember the name, you can use the function "List Object(s)" (see below

n be

~

Rename Objecl

With this function, you can change the name of a programming object. This function ig
equivalent to the system commaRENAME as described in the Natural Command
Reference documentation.

Delete Object

With this function, you can delete one or more programming objects. This function is
equivalent to the system commabBLETE as described in the Natural Command Refers
documentation.

ence

Subroutines
Used

which external subroutines.

This function is equivalent to the system commBQUTINESas described in the Natural

Execute With this function, you can execute a Natural object of type program. You have to spegify the
Program name of the program to be executed.
Other object types cannot be executed by themselves, but must be invoked from another
object.
This function is equivalent to the system commBX&ECUTE as described in the Natural
Command Reference documentation.
List Object(s) | This function allows you to select from a list the programming object you wish to edit.
This function is equivalent to the system commBl&I as described in the Natural
Command Reference documentation.
List With this function, you can ascertain which programming objects in the current library pse

Command Reference documentation.

Copyright © Software AG 2002

11

Changing the Library Fundamentals

Changing the Library

In the top right-hand corner of the Development Functions menu is a Library field, which indicates the ID of
your current library, that is, the current library where programming objects are stored and from which they are
retrieved.

The library ID is in effect until you change it, or until the end of your Natural session. The default library 1D
assigned by Natural is "SYSTEM".

On the Development Functions menu, you can change libraries by overwriting the library ID displayed in the top
right-hand corner with another library ID.

Generally, you can change libraries anywhere in Natural by entering the following system command in the
command line:

LOGON library-1D

wherelibrary-ID is the ID of the library you want to access.

Programming Modes

Natural offers two ways of programming: reporting mode and structured mode. Generally, it is recommended to
use structured mode exclusively, because it provides for more clearly structured applications. Therefore all
explanations and examples in the Natural User's Guide for Mainframes refer to structured mode. Any
peculiarities of reporting mode will not be taken into consideration. (For differences between the two modes,
refer to the sectioReporting Mode and Structured Moittethe Natural Programming Guide.)

In the top right-hand corner of the Development Functions menu is a Mode field, which indicates the
programming mode currently in effect: "Structured" or "Reporting”.

To change the mode, you overwrite the first position of the Mode field with an "S" (for structured mode) or an
"R" (for reporting mode).

12 Copyright © Software AG 2002

Fundamentals

Development

Development Environment Settings

Environment Settings

When you select "Development Environment Settings" on the Natural Main Menu, a menu with the following
functions is displayed:

Function Description
Function-Key With this function, you can assign functions to PF keys to be used in your Natural g
Settings

Corresponding commanlEY
Compilation With this function, you can set various options that affect the way in which Natural
Settings programming objects are compiled.

Corresponding comman@OMPOPT

Session Paramete
Settings

With this function, you can change the settings of various Natural session parametg

Corresponding comman@GLOBALS.

Profile Parameter
Settings

With this function, you can change the settings of various Natural profile parameter|
Profile parameterare described in the Natural Parameter Reference documentation
Profile Parameter Usage the Natural Operations for Mainframes documentation.
The command SYSPARM invokes a utility of the same name SM&PARM utility is
described in the Natural Utilities for Mainframes documentation.

Corresponding comman&8YSPARM

Technical Session

This function displays various items of technical information on your Natural sessio

Information

Corresponding comman@ECH.
System File This function displays the current definitions of the Natural system files.
Information

Corresponding comman8YSPROF
Product This function displays a list of the products installed at your site and some informat
Installation these products.
Information

Corresponding comman8YSPROD

ession.

IS,
Session parametease described in the Natural Parameter Reference documentation.

and in

on on

Security Profile
Information

This function displays the security profile currently in effect for you. (This function ig
only available if Natural Security is installed.)

Corresponding commanBROFILE

Copyright © Software AG 2002

13

Development Environment Settings Fundamentals

To invoke a function from the menu, you mark the corresponding input field - either with the cursor or with any
character.

You can also invoke each function via a corresponding system command (as indicated in the table above). The
system commands are described in the Natural Command Reference documentation.

For details on each function, refer to the description of the corresponding system command or utility.

14 Copyright © Software AG 2002

Fundamentals

Maintenance and Tr

Maintenance and Transfer Utilities

ansfer Utilities

When you select "Maintenance and Transfer Utilities" on the Natural Main Menu, a menu with the following

utilities is displayed:

Libraries

DDMs and several other objects from one library to another.

Corresponding comman8Y SMAIN (*).

Transfer Objects to Other
System Files

With this utility, you can transfer Natural programming objects, DDMs and
error messages from one system file to another.

Corresponding comman&Y SUNLD (*).

Function Description

Maintain Error Messages | With this utility, you create and maintain the messages you wish to issue ir} your
Natural applications.
Corresponding comman8Y SERR(*).

Maintain DDMs With this utility, you create and maintain the data definition modules (DDM$),
that is, the logical definitions of the database files you wish to access in your
Natural applications. For a detailed explanation of DDMs, see the section
Database Access the Natural Programming Guide.
Corresponding comman8YSDDM (*).

Maintain Command With this utility, you create and maintain the command processors you wish to

Processors use in your Natural applications.
Corresponding commangyY SNCP(*).

Maintain Remote Procedur With this utility, you create and maintain remote procedure calls, that is, prpvide

Calls the settings necessary to execute a Natural subprogram located on a remqte
server.
Corresponding commang SRPC(*).

Transfer Objects to Other | With this utility, you can transfer Natural programming objects, error messages,

Transfer Objects to Other
Platforms

With this utility, you can transfer Natural programming objects, DDMs, errg
messages and Adabas FDTs from one hardware platform to another.

Corresponding comman&Y STRANS(*).

* Each of these commands invokes a utility or application of a corresponding name. For a description of the
utilities see théNatural Utilities for Mainframeslocumentation or refer to the list of utilities on twerview

pageof Natural for Mainfram

es.

To invoke a function from the menu, you mark the corresponding input field - either with the cursor or with any

character.

You can also invoke each function via a corresponding system command (as indicated in the table above).

For details on each function

Copyright © Software AG 2002

, refer to the description of the corresponding system command or utility.

15

Debugging and Monitoring Utilities

Fundamentals

Debugging and Monitoring Utilities

When you select "Debugging and Monitoring Utilities" on the Natural Main Menu, a menu with the following

utilities is displayed:

Function

Description

Debugging

With this utility, you can search for errors in the processing flow of progfams.

Corresponding comman@EST.

Logging of Database Calls

With this utility, you can log database commands.

Corresponding comman@EST DBLOG

Issuing Adabas Calls

With this utility, you can pass Adabas commands directly to the databag

Corresponding comman&Y SADA (*)

Buffer Pool Maintenance

With this utility, you can monitor the Natural buffer pool and adjust it to 1
your requirements.

Corresponding comman8YSBPM(*).

heet

Editor Buffer Pool
Maintenance

With this utility, you can monitor the buffer pool of the Software AG Edit
and adjust it to meet your requirements.

Corresponding comman8YSEDT (*).

TP-Specific Monitoring

With this utility, you can monitor and control various TP-monitor-specifig
characteristics of Natural.

Corresponding comman&yY STP(*).

Data Collection and Tracing

With this utility, you can collect monitoring and accouting data about the
processing flow of a Natural application.

Corresponding comman&YSRDC(*).

Error Information on Abnorma
Termination

This function provides information for Software AG Technical Support
required for error diagnosis.

Corresponding comman®UMP.

You can also invoke each function via a corresponding system command (as indicated in the table above). The

system commands are described in the Natural Command Reference documentation.

* Each of these commands invokes a utility or application of a corresponding name. For a description of the
utilities see théNatural Utilities for Mainframeslocumentation or refer to the list of utilities on twerview

pageof Natural for Mainframes.

documentation.

16

SYSEDT is described in the Natural Operations for Mainframes

Copyright © Software AG 2002

Fundamentals Debugging and Monitoring Utilities

To invoke a function from the menu, you mark the corresponding input field - either with the cursor or with any
character.

You can also invoke each function via a corresponding system command (as indicated in the table above).

For details on each function, refer to the description of the corresponding system command or utility.

Copyright © Software AG 2002 17

Example Libraries Fundamentals

Example Libraries

When you select "Example Libraries" from the Natural Main Menu, a list of libraries containing example
programs and user exits provided by Software AG will be displayed:

Library Contents

SYSEXPG | This library contains the example programs shown and referred toNatheal Programming
Guide

SYSEXRM | This library contains the example programs shown and referred tolatbheal Command
Referencalocumentation and thatural Statementdocumentation.

SYSEXV23| This library contains example programs which illustrate some of the new features provided with
Version 2.3 of Natural.

SYSEXT | This library contains various Natural user exits; see also the system cor8V&BXT as
described in the Natural Command Reference documentation.

SYSEXTP | This library contains various Natural user exits for specific functions that apply only under [certain
TP monitors.

To display the contents of a library, you mark the corresponding input field - either with the cursor or with a
character.

Other Products

When you select "Other Products" from the Natural Main Menu, a list will be displayed showing the Software
AG products installed at your site which can be invoked via Natural and to which you have access.

To invoke a product, you mark the corresponding input field - either with the cursor or with a character.

18 Copyright © Software AG 2002

Fundamentals Natural Editors

Natural Editors

Natural provides three editors: the program editor, the data area editor, and the map editor.

The type of programming object to be edited determines the editor you will use. When you specify a
programming object by name, the appropriate editor is automatically invoked.

® Program Editor This editor is used to create and maintain programs, subroutines, subprograms,
helproutines, copycodes and texts.

e Data Area Editor This editor is used to create and maintain global data areas, local data areas, and
parameter data areas.
This editor has a columnar format that is designed for defining the data used in Natural programs or
routines.

e Map Editor- This editor is used to create and maintain maps (screen layouts) referenced in a program’s
INPUT or WRITE statement.
The map editor allows direct manipulation of the fields used in an input or output map; the extended field
editing feature facilitates the definition of fields; moreover, processing rules can be attached to fields in the
map.

All editors can be operated in split-screen mode so that a portion of the screen can be used to display related
objects. While creating or editing a map in the map editor, for example, you may have DDM fields displayed and
transfer these fields into the map.

Examples for the use of editors are provided in the seclistwsial - Getting Started with NaturahdTutorial -
Using the Map Editor

For further general information, see the seckditors - General Information.

Terminal Commands

Natural terminal commandse used to perform a wide variety of functions.
All terminal command begin with a percent sign (%).

The Natural Programming Reference documentation contains a description of each terminal command. See
Terminal Command Listr Terminal Commands Grouped by Function

Note:

Within a program, you can assign terminal commands to function keys by using the SET KEY statement. With
the system command KEY you can also assign terminal commands to functions keys. See also (Terminal
CommandXey Assignmentsn the Natural Programming Reference documentation.

Copyright © Software AG 2002 19

Asterisk Notation Fundamentals

Asterisk Notation

Many Natural functions display lists of objects. Usually, these lists contain all objects available (for example, all
objects of a given type, all objects in a given library). If you do not wish all objects to be listed, but only a certain
range of objects, you may specify that range by usatgrisk notation

By specifying a parameter value followed by an asterisk (*) you will get a list of only those objects whose names
(or IDs or whatever the parameter is) begin with that value. This option to enter a value followed by an asterisk
is referred to aasterisk notation
Example 1:
If you enter the system command DELETE without any parameters:
DELETE
you will get a list of all objects in the current library (you can then mark those which are to be deleted).
Example 2:
If you enter the system command DELETE as follows:

DELETE DAWG*

you will get a list of only those objects in the current library whose names begin with DAWG.

20 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Tutorial - Getting Started with Natural

Tutorial - Getting Started with Natural

The sample sessions provided in this section are based on a program, a map, and a subprogram. Ask your Natural
administrator to make these available to you. If you do not have access to copies of these objects, you will still
be able to step through these sessions by creating them yourself.

The output screens provided in the sessions are merely meant as examples and may not correspond with your
results. Also, behavior and appearance of Natural (screen layout, system messages, etc.) may differ from your
environment as they depend on the system parameters set by your Natural administration.

These sessions amnet intended to provide an example of how an application should be built. Rather, each

session is designed to provide a gradual exposure to specific features and build a context for introducing the next
session’s features. It is important that you work through the sessions in the sequence below. This tutorial
approach does not parallel a typical application development cycle.

Session 1 - Creating a Program and a Map
Session 2 - Creating a Local Data Area
Session 3 - Creating a Global Data Area
Session 4 - Creating an External Subroutine
Session 5 - Editing a Map

Session 6 - Invoking a Subprogram

See also:

® Tutorial - Using the Map Editor

Session 1 - Creating a Program and a Map

Map Program Lacal

_______________ 1 Data
Subroutine }

In this session, you will use tipeogram editorto create a Naturg@irogram In this first session, the fields used
in the program are defined as local data within the program. Moreover, an inline subroutine is contained within
the program.

Copyright © Software AG 2002 21

Session 1 - Creating a Program and a Map Tutorial - Getting Started with Natural

Also, you will use thenap editorto create anapused by the program.

22 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 1

Step 1

Invoke Natural according to the procedures at your site. If you get a NEXT or MORE prompt, enter the
command MAINMENU. The Natural Main Menu will be displayed:

16:50:53 rrkkk NATURAL *rke 2001-01-30
User SAG - Main Menu - Library SYSTEM

Function

_ Development Functions

_ Development Environment Settings
_ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_Help

_ Exit NATURAL Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Step 2

Both Natural system programs and user-written applications are stdfg@iies. It may be necessary to move
from one library to another in order to perform a maintenance function or work on a different application.

The field "Library" in the top right-hand corner shows the ID of the current library. To move to another library,
enter the command "LOGONbrary-ID" (library-ID being the ID of the library you want to access) in the
Command line. If you have access to a library that contains copies of the sample programs used in these
sessions, enter thibrary-ID of that library. By default, sample programs are provided in the system library
SYSEXPG,; ask your Natural administrator for details.

Copyright © Software AG 2002 23

Step 3 Tutorial - Getting Started with Natural

Step 3

On the Natural Main Menu, select "Development Functions”. The Development Functions menu will be
displayed:

16:51:14 wekkx NATURAL Fxxk* 2001-01-30
User SAG - Development Functions - Library SYSTEM
Mode Reporting
Work area empty
Code Function

Create Object

Edit Object

Rename Object
Delete Object
Execute Program

List Object(s)

List Subroutines Used
Help
Exit

N EXOXxomMmO

Code .. _ Type.._
Name ..

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

You must be operating structured modéo work through these sessions. If your sessionrnsgarting mode
change the mode by entering an "S" in the first position of the "Mode" field. (If you should not be able to change
the mode in this manner - it is dependent on your site - contact your Natural administrator for assistance.)

24 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 4

Step 4

In the course of developing application systems, Natural objects can be created and modified from the
Development Functions menu.

If you wish to get help information about the functions on this menu, enter a question mark (?) in the Code field.

Below the list of functions, there are three input fields: "Code", "Type", and "Name". Further below is the
command line. You can perform a Natural function either by entering the appropriate values in the input fields,
or by entering a system command in the command line.

For example, to invoke the program editor to edit an existing program PGMO01, you would enter the following in
the input fields:

? Help
Exit
Code .. E Type.. _
Name .. PGMO1

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

The equivalent system command, entered in the command line, would be:

? Help
Exit

Code .. _ Type.._
Name ..

Command ===> EDIT PGMO01
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

If an object already exists (such as, program PGMO01 in the previous example), it is not necessary to specify its
type in the "Type" field; this is because each object in a Natural library, regardless of its type (program, map,
subroutine, etc.), must have a unique name. When you create a new object, you have to specify the type of the
object in the "Type" field.

Once you have become familiar with the sequence of menu screens, you will be able to go directly to the screen
you want by issuing a system command. You may enter a system command on every Natural screen which
provides a command line.

Copyright © Software AG 2002 25

Step 5 Tutorial - Getting Started with Natural

Step 5

On the Development Functions menu, enter the code "E". The Nattagahm editorwill be displayed:

> >+ Program Lib SYSTEM
All A+ 20003 A+ B B LT
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
vt 2040030 +.04..4..5..+4..50 L1

e If you have access to a copy of program PGMO01, enter the command READ PGMOL1 in the command line at
the top of the editor screen. Make sure that the program matches program PGMO01 shown on the following
page.

e If you do not have access to a copy of PGMO1, type in the program as illustrated in the following section.

(If the source work area is not empty, enter the command CLEAR in the command line at the top of the
editor screen.) As you fill up a screen, type the command ADD in the command line for more blank lines.
When complete, enter the command SAVE PGMO01 in the command line to store the program.

Note:
To return to the beginning of the program, enter the command TOP in the editor's command line, to go to the
end of the program, enter the command BOT.

Program PGMO1.:

* Example Program 'PGMO1’ for User’s Guide Tutorial
*

DEFINE DATA
LOCAL
01 #NAME-START (A20)
01 #NAME-END (A20)
01 #MARK (A1)
01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
02 PERSONNEL-ID (A8)
02 NAME (A20)
02 DEPT (AB)
02 LEAVE-DUE (N2)
END-DEFINE

*

REPEAT

*

INPUT USING MAP 'MAPOY’
IF #NAME-START ="’

26 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 5

ESCAPE BOTTOM

END-IF

MOVE #NAME-START TO #NAME-END

*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
THRU #NAME-END

IF LEAVE-DUE >= 20
PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
RESET #MARK
END-IF
DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20" #MARK

END-READ

*

IF *COUNTER (RD1) =0

REINPUT 'PLEASE TRY ANOTHER NAME’

END-IF

*

END-REPEAT

*

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE ™ TO #MARK

END-SUBROUTINE

*

END

Copyright © Software AG 2002 27

Step 5 Tutorial - Getting Started with Natural

Once you reached this point (either by writing the program yourself or by reading it into the editor), note the
following aspects of this example of a Natural program:

® The first statement must always be a DEFINE DATA statement. All variables to be used in the program
must be defined in this initial DEFINE DATA statement. In this example program, the variables are defined
in a DEFINE DATA LOCAL statement; that is, the data are definastnalto the program.

e All statements which initiate a logical construct or processing loop (DEFINE DATA, REPEAT, IF, READ)
must be ended with a corresponding END-... statement (END-DEFINE, END-REPEAT, END-IF,
END-READ).

® The READ statement is marked with a so-cafietement labehamely "RD1.". Via this label it is
possible to reference the statement at a later point in the program (see last IF statement).

When this program is executed, a screen appears, prompting the user to enter a name. The EMPLOYEES file is
searched to locate all employees with that name. Then a report is displayed which includes the Name,

Department and Leave Due of each employee with that name. Those employees who have more than 20 days
leave due are marked with an asterisk (*).

The prompting screen is invoked via the INPUT USING MAP statement. The report is formatted according to
information in the DISPLAY statement. The processing required to show which employees have more than 20
days leave is handled in the portion of the program starting with "IF LEAVE-DUE ...". Those with 20 or more

days of leave due have an asterisk in the final report as a result of processing in the PERFORM statement and the
DEFINE SUBROUTINE statement.

28 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 6

Step 6

The program contains an INPUT USING MAP statement which invokes a map named MAPOL. This map is yet
to be created.

In the program editor's command line, enter a period (.) to return to the Development Functions menu. On the
Development Functions menu, enter the function code "E" (for Edit Object) in the Code field and "M" (for Map)
in the Type field:

Exit

Code .. E Type.. M
Name ..

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

The Edit Map menu will be displayed:

17:55:11 *rexk NATURAL MAP EDITOR *xxx* 2001-01-30
User SAG - Edit Map - Library SYSTEM

Code Function
D Field and Variable Definitions

E Edit Map

| Initialize new Map

H Initialize a new Help Map

M Maintenance of Profiles & Devices

S Save Map

T

W

?

Test Map
Stow Map
Help

Exit

Code ..l Name.. Profile .. SYSPROF _

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Test Edit

Copyright © Software AG 2002 29

Step 7 Tutorial - Getting Started with Natural
Step 7

Enter the code "I" (Initiate a New Map) and the name MAPOL. The Define Map Settings For Map screen will be
displayed:

17:56:47 Define Map Settings for MAP 2001-01-30
Delimiters Format Context
Cls AttCD Del Page Size 23 Device Check

BLANK Line Size 79 WRITE Statement _
? Column Shift ... 0 (0/1) INPUT Statement X
Layout Help

T D

T 1

A D _

Al) dynamic N (Y/N) as field default N (Y/N)
AN ~ Zero Print N (Y/N)
M D
[\
O D
(O

& Case Default ... UC (UC/LC)
Manual Skip N (Y/N) Automatic Rule Rank 1
+ Decimal Char Profile Name SYSPROF
(Standard Keys .. N (Y/N)

Justification .. L (L/R) Filler Characters

Print Mode e
Optional, Partial

Control Var Required, Partial
Optional, Complete ...

Apply changes only to new fields? N (Y/N) Required, Complete ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

Step 8

In the Filler Characters section of the screen, enter an underscpeadtér each of the options:

Justification .. L (L/R)

Filler Characters
Print Mode

Optional, Partial _
Control Var Required, Partial _
Optional, Complete ... _
Apply changes only to new fields? N (Y/N) Required, Complete ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

The map will use this character whenever a field has empty positions to fill within a field. (Delimiter characters
can also be modified on this screen, however for these sessions, they are left unchanged.)

30 Copyright © Software AG 2002

Tutorial - Getting Started with Natural

Press ENTER again. The map editor screen will be displayed in split-screen format:

Step 8

Ob _

Ob D CLSATT DEL CLSATT DEL
TD Bnk T1I ?

Al)
M D &
OD +

oZ>r»>

D _
N AN
[
[

(

070 IS o SISy Ty NSRS SN 1o BRSNS o S

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

The top portion of the screen will not be used in this exercise. The bottom section is the editing area in which

you will create the map.

During the creation of the map, you will use a number of map dtitocommandsndfield commands

e A line command begins with two periods (..). You enter it at the beginning of a line, and it applies to the

whole line in which you enter it.

e A field command begins with one period (.). You enter it at the beginning of a field, and it applies only to

the field in which you enter it.

(The sessions in the sectidatorial - Using the Map Editaxlso show you how to apply these commands to

more than one line/field at a time.)

Copyright © Software AG 2002

31

Step 9 Tutorial - Getting Started with Natural

Step 9

Move the cursor to the second line of the editing area and type in the following:

Please enter starting name :X(20)

When you press ENTER, the screen will look as follows:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . TD Bink T1 ?

Al)
MD &

D _
N/\
| OD +
|

o> >

(
070 IS o USRIy Ty MR SN 1o BRSNS o S

Please enter starting name : XXX XXX XX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

If the letters you typed in are automatically converted to upper case, press PF3 to return to the Edit Map menu
and enter%.L" in the command line.

Step 10

Type in the line command "..C" (Center) over the first three positions of the line that contains "Please enter
starting name" as shown below:

ob _ Ob D CLS ATT DEL CLS ATT DEL
. . TD Bink T1 ?

Al)
MD &

D _
N/\
[oD +
[

o> >

(

001 =-010--+n-mrmemeo-030-—memrbememt o5 0mrbememboemcbon0 7 Qmemrboene

..case enter starting name :XXXXXXXX XXX XXX XXX XXX

32 Copyright © Software AG 2002

Tutorial - Getting Started with Natural

As a result, the line will be centered:

Step 11

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . TD Bink T1 ?

Al)
MD &

D _
N/\
| OD +
|

o> >

(

070 IS o SISy Ty NSRS SN 1o BRSNS o S

Please enter starting name : XXXXXXXXXXXXXXXXXXXX

Step 11

Move the cursor to the end of the new line, leave a space after the field and type in the following text:

(. to exit)

The screen will now look as follows:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . TD Bink T1 ?

D _ Al)
N ~ MD &
| © OD +
|

o> >

(
001 =-010--+mmmrmemebex030-mmemebememb e Q5 0mrbememb e oe0 7 Qmemrboen

Please enter starting name : XXX XXXXXXXXXX (. to exit)

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

Copyright © Software AG 2002

33

Step 12 Tutorial - Getting Started with Natural

Step 12

Type in the field command ".E" (for extended field editing) over the first two positions of the field
"IXXXXX KKK AKX XXX XXX XXXX", as shown below:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
TD Bink T1 ?

D _ Al)

N A~ MD &

l © OD +

|

o> >

(
001 =-010--+n-mrmemebo-030-—memebememt o5 0mrbemembocmcrbon0 7 Qmemrboen

Please enter starting name B XXX XXX XXX XXX XXXX (. to exit)

This will invoke the extended field editing section for the field marked with the command:

Fld #001 Fmt A20

AD=MIT" ZP=OFF SG=OFF HE= RIs O
AL= CD=__ Cv= Mod Undef
PM=__ DF= DY=

EM=

001 --010--—4--=-rmmemr-Q30mmwrmmrmbromerbmeeQB5Qnmerbmmmb rcmeboee Q7 Ommeboene

Please enter starting name . EXXXXXXXXXXXXXXXXXXX (. to exit)

The field "FId" in the upper left corner contains the field name "#001". This number has been assigned
automatically by Natural.

Overwrite "#001" with the field name "#NAME-START":

Fld #NAME-START Fmt A20

AD=MIT’ ZP=0OFF SG=OFF HE= Ris 0
AL= Ch=__ Cv= Mod Undef
PM=_ DF= DY=

EM=

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Press PF3 to leave the extended field editing section.

34 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 13

Step 13
The map is now complete.

Press PF4 to test the map. The map will be displayed in the form it which it will be displayed on the screen it is
invoked via the INPUT USING MAP statement in the program PGMO1:

Please enter starting name (. to exit)

Press PF3 to stop testing and return to the map editing screen.

Step 14

Press PF3 again to return to the Edit Map menu.

Enter the code "W". The map is now stowed (that is, stored in source form and in object form) and ready to be
used by the program.

To return to the Development Functions menu, enter a period (.) in the Code field.

Step 15
In the command line of the Development Functions menu, enter the command EDIT PGMO1.

Then enter the command RUN in the command line at the top of the program editor. This command compiles
and executes the program PGMO1.

A screen will be displayed requesting you to enter a name. For demonstration purposes, enter the name JONES.

Based on this name, the program will produce the following output report:

Page 1 00-11-30 12:45:56
NAME DEPARTMENT LEAVE >=20
CODE DUE
JONES SALE30 25
JONES MGMT10 34
JONES TECH10 11
JONES MGMT10 18
JONES TECH10 21
JONES SALEQO 30
JONES SALE20 14
JONES COMP12 26
JONES TECHO02 25

Copyright © Software AG 2002

35

Step 16 Tutorial - Getting Started with Natural

Step 16

Keep pressing ENTER until you get to the map input screen again. When the program asks you again to enter a
name, enter a period (.) and delete the remaining characters from the input field. You will be returned to the
program editor.

Step 17

Whenever you issue a CHECK, RUN or STOW command, the program is checked for syntax errors that would
keep the program from being processed.

To introduce such an error, move the cursor to the following statement line:
DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20" #MARK

Delete the apostrophe after "20". The line now look as follows:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20 #MARK

In the command line, enter the command CHECK. The error message "Text string must begin and end on the
same line." will appear:

> >+ Program PGMO1 Lib SYSEXPG
et 20403 A LSBT
0350 BY NAME
0360 STARTING FROM #NAME-START
0370 THRU #NAME-END
0380 *

0390 IF LEAVE-DUE >=20
0400 PERFORM MARK-SPECIAL-EMPLOYEES
0410 ELSE
0420 RESET #MARK
0430 END-IF
0440 *
E 0450 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20 #MARK
0460 *
0470 END-READ
0480 *
0490 IF *COUNTER (RD1.)=0
0500 REINPUT 'PLEASE TRY ANOTHER NAME’
0510 END-IF
0520 *
0530 END-REPEAT
0540 *
et 2040304 +0.5..4+...S 59 L35
NATO0305 Text string must begin and end on the same line.

Natural requires that a text string (in this case '>=20") must be begun and closed on the same statement line; the
beginning and closing of a text string must be indicated by apostrophes. When the closing apostrophe is deleted,
this condition is no longer met.

Note:

If you wish to get more information explaining the meaning of the error message, you can enter a question mark
(?) and the error number of the message in the command line to invoke the help system, for example,

"? NAT0305".

36 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 18

Step 18

Type in the missing apostrophe again. Then enter the command CHECK in the command line again to make sure
the program is now correct.

Then enter the command RUN in the command line. When the program has run successfully, return to the
program editor again by entering a period (.).

Step 19

Enter the command STOW in the command line to compile the program and save both source and object form.
Then enter a period (.) in the command line to return to the Development Functions menu.

End of Session 1.

Copyright © Software AG 2002 37

Session 2 - Creating a Local Data Area Tutorial - Getting Started with Natural

Session 2 - Creating a Local Data Area

Map Program Local
Data
________________ Area
Subroutine

In Session 1, the fields used by the program were defined within the DEFINE DATA statement in the program
itself. It is also possible to place the field definitions ln@al data areaoutside the program, with the program’s
DEFINE DATA statement referencing that local data area by name.

In this session, the information in the DEFINE DATA statement will be relocated to a local data area outside the
program. In subsequent sessions some of this information can be used as the basis of a global data area shared by
a program and an external subroutine. As you will see in Sessions 3 and 4, an important advantage of data areas

is to allow a program and its external subroutine to share the same data in a single data area.

Several program editor commands will be used in this and the following sessions. See th&d#ation
Commanddor a detailed explanation.

38 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 1

Step 1

On the Development Functions menu, enter the code "E" and object type "L" to doeatedata area

Thedata area editomwill be invoked with the object type set to "Local":

Local Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - -

SO0 L1

In this editor, you can define the data areas to be used by Natural programs or routines. A basic outline of the
fields on this screen is provided below:

Field Explanation

I This is aninformationfield used by the editor to indicate the presence of a definition error ("E")| or to
indicate other information on the variable (initial value, edit mask definition, etc.) You cannot modify
information in this field.

T This field indicates th&ypeof the variable. For example, some fields in the data area to be cregted in
this session will be part of a view, which will be indicated by a "V" in this column. Other object types
include groups, data blocks, multiple-value fields, periodic groups, and constants.

L In this field you specify the hierarchidalel of the variable (1 to 9). A variable which is not withip a
hierarchical structure is assigned a level 1 designation.

Name |In this field you specify theameof the variable (or block or view).

F In this field you specify théormatof the variable.

Leng |In this field you specify theengthof the variable.

Index/...| This field is used for array definition, initial value assignment, edit mask information, originating
view name (for fields derived from a view), or a comment.

Copyright © Software AG 2002

39

Step 2 Tutorial - Getting Started with Natural

Step 2

In the command line of the data area editor, enter the command "SPLIT P PGMO01". This puts the editor into
split-screen mode with program PGMO1 appearing in the lower half of the screen and the data area (as yet blank)
in the upper half.

To scroll forward in the lower half of the screen, enter the command "SPLIT +" in the command line of the data
area editor ("SPLIT -" scrolls backward). Enter the command again until the DEFINE DATA LOCAL statement
and at least three statement lines below it are displayed on the screen:

Local Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - -
SO0 L1

Program PGMO01 Library SYSTEM

0120 DEFINE DATA

0130 LOCAL

0140 01 #NAME-START (A20)

0150 01 #NAME-END (A20)

0160 01 #MARK (A1)

0170 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES

40 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 3

Step 3

Using the program as a reference, copy the definitions of the first three variables from the DEFINE DATA
statement into the data area editor screen. In column "L" enter the level number "1" before each variable; in
column "Name" enter the variable names; in column "F" enter their formats, and in column "Leng" their lengths.

The screen should now look as follows:

Local Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - -
1 #NAME-START A 20
1 #NAME-END A 20
1 #MARK Al
S3 L1
Program PGMO1 Library SYSTEM
0120 DEFINE DATA
0130 LOCAL
0140 01 #NAME-START (A20)
0150 01 #NAME-END (A20)
0160 01 #MARK (A1)
0170 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES

Each of the three variables has a "#" as the initial character. This character is used to identify user-defined
variables; that is, to distinguish them from database fields.

Enter the command CHECK to see if everything you typed in as part of the new local data area is correct. This
command ends split-screen mode and you return to the full-screen mode.

Copyright © Software AG 2002 41

Step 4 Tutorial - Getting Started with Natural

Step 4

The local data area is not yet complete. You can read the other variables you need directly from a view into the
data area editor.

In the line below the variables you have already defined, enter the command ".V (EMPLOYEES)" (starting in
column "T"). The view EMPLOYEES will be displayed:

Local Library SYSTEM DBID 10FNR 32
View EMPLOYEES
I TL Name F Leng Index/Init/EM/Name/Comment

2 PERSONNEL-ID A 8
G 2 FULL-NAME
3 FIRST-NAME A 20
3 MIDDLE-I A1
3 NAME A 20
2 MIDDLE-NAME A 20
2 MAR-STAT A1
2 SEX A1l
2 BIRTH D
2 NJBIRTH I 2
G 2 FULL-ADDRESS
M 3 ADDRESS-LINE A 20 (1:191) /* MU-FIELD
3 CITY A 20
3ZIP A
3 POST-CODE A 10
3 COUNTRY A 3
G 2 TELEPHONE

SYSGDA 4461: Mark fields to incorporate into data area.

42 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 5

Step 5

From this view (DDM), select the fields which you want to include in the local data area by marking them with
any character in column "I". In this case, mark the fields PERSONNEL-ID, NAME, DEPT and LEAVE-DUE.
DEPT and LEAVE-DUE are not in the first section of the view; to scroll forward within the view, keep pressing
ENTER until the section which contains DEPT and LEAVE-DUE is displayed.

After you have marked all the fields indicated, continue pressing ENTER until the local data area - which now
includes the fields you have selected from the EMPLOYEES view - is displayed again:

Local Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - - -

1 #NAME-START A 20

1 #NAME-END A 20

1 #MARK Al

V 1 EMPLOYEES-VIEW EMPLOYEES

2 PERSONNEL-ID A 8

2 NAME A 20

2 DEPT A 6

2 LEAVE-DUE N 2.0

S8 L1

SYSGDA 4462: 4 field(s) of view EMPLOYEES included.

Step 6

The local data area is now complete. To check if it contains any errors, enter the command CHECK in the
command line of the editor.

If it contains any errors, correct them and repeat the CHECK.

Then enter the command STOW LDAOL1 in the command line. The local data area is now compiled and stored in
source and object form under the name LDAOL.

Note that a data area must be compiled and stored in object form before any program referencing that data area
can be compiled.

Copyright © Software AG 2002 43

Step 7 Tutorial - Getting Started with Natural

Step 7
Now program PGMO1 must be edited to reference the local data area LDAO1.

In the command line of the data area editor, enter the command EDIT PGMO01. This invokes the program editor
and reads the program PGMOL1 into the work area of the program editor.

Step 8

Now that the variables are defined in the local data area LDAOL, the DEFINE DATA statement has to be
changed from actually containing the definition of variables to merely referencing the data area in which the
variables are defined.

Enter the command ".D" at the beginning of each line that contains a variable definition within the DEFINE
DATA statement, as shown below:

> >+ Program PGMO01 Lib SYSTEM
et 20 B AL 5B LT
0010 * Example Program: PGMO01
0020 * Function: Demonstrate Natural
0030 *
0040 DEFINE DATA
0050 LOCAL
0060 .d 01 #NAME-START (A20)
0070 .d 01 #NAME-END (A20)
0080 .d 01 #MARK (A1)
0090 .d 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
0100 .d 02 PERSONNEL-ID (A8)
0110 .d 02 NAME (A20)
0120 .d 02 DEPT (A6)
0130 .d 02 LEAVE-DUE (N2)
0140 END-DEFINE

When you press ENTER, these lines are deleted from the program.
Then enter the following after the word LOCAL.:

USING LDAO1

44 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 8

The program should now look as follows:
Program PGMO1.:

* Example Program 'PGMO1’ for User’s Guide Tutorial
*

DEFINE DATA
LOCAL USING LDAOL
END-DEFINE *
REPEAT
*
INPUT USING MAP '"MAPOL’
IF #£NAME-START ="/
ESCAPE BOTTOM
END-IF
MOVE #NAME-START TO #NAME-END
*
RD1. READ EMPLOYEES-VIEW
BY NAME
STARTING FROM #NAME-START
THRU #NAME-END
IF LEAVE-DUE >= 20
PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
RESET #MARK
END-IF
DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
END-READ
*
IF *COUNTER (RD1.) = 0
REINPUT 'PLEASE TRY ANOTHER NAME’
END-IF

*

END-REPEAT

*

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE ™ TO #MARK

END-SUBROUTINE

*

END

Copyright © Software AG 2002 45

Step 9 Tutorial - Getting Started with Natural

Step 9

You can enter comments into a program to document the changes you made to the program. Comments help
anyone editing or maintaining a source program, and are ignored in processing.

You mark a line as a comment line by entering either an asterisk and a blank (*) or two asterisks (**) at the
beginning of the line. In the rest of the line you can then enter any comment. If you wish to append a comment to
a line containing a statement, you enter the character string blank-slash-asterisk (/*); anything to the right of this
character string will then be considered a comment and ignored at execution.

In the second line of the program, enter the command ".I(1)" to insert an empty line. In the empty line, add some
comment to indicate that this program has been updated, as shown in the example below.

Example:
* Example Program 'PGMO1’ for User’s Guide Tutorial * PROGRAM NOW USES A LOCAL DATA AREA
*
DEFINE DATA
LOCAL USING LDAO1 /* This comment is for demonstration purposes only.
END-DEFINE

The subsequent sessions in this section show further examples of comments, which you can add to keep track of
changes you have made.

Step 10

CHECK the program and correct any errors. RUN the program to confirm that the results are the same as when
the DEFINE DATA statement did not reference a local data area. STOW the program so that it will be available
for Session 3.

End of Session 2.

46 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Session 3 - Creating a Global Data Area

Session 3 - Creating a Global Data Area

Lecal Data Area

Map Program

Global Data Area

Subroutine

In Natural, data can be defined in a single location outside any particular program or routine. Data defined in
such aglobal data areacan then be shared by multiple programs/routines.

In this session, you will create a global data area. In addition, the local data area created in Session 2 will be
modified. Moreover, the program has to be modified to reference not only the local data area, but also the new
global data area.

Step 1

On the Development Functions menu, enter the code "E" and name LDAOL. This invokes the data area editor
and reads the local data area LDAO1 into the work area of the editor.

Step 2

To create the new data area, save the contents of the work area under a different name: in the command line of
the editor, enter the command SAVE GDAOL1.

Then enter the command READ GDAOL to read the newly created data area into the work area. As it is identical
to the original one, only the name displayed at the top of the data area editor will change from LDAOL1 to
GDAOL1.

Copyright © Software AG 2002 47

Step 3 Tutorial - Getting Started with Natural

Step 3

Then enter the command SET TYPE GLOBAL. As a result, you will now be editing the data area in the editor as
aglobal data area

Enter the line command ".D" to delete the first two lines (#NAME-START and #NAME-END). The data area
now looks as follows:

Global GDAO01 Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - - -

1 #MARK Al

V 1 EMPLOYEES-VIEW EMPLOYEES

2 PERSONNEL-ID A 8

2 NAME A 20

2 DEPT A 6

2 LEAVE-DUE N 2.0

S6 L1

Keep in mind that a data area must be compiled and stored in object form before any program referencing that
data area can be compiled and executed.

In the command line, enter the command STOW. GDAO1 is now compiled and stored in source and object form.

48 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 4

Step 4

Now some variables must be removed from the local data area, because they are now defined in the new global
data area.

Enter the command READ LDAO1 in the command line to read the local data area LDAO1 into the editor.

With the line command ".D", delete from LDAO1 all variables which are now also defined in GDAO1; that is,
everything except the two variables #NAME-START and #NAME-END. The modified data area now looks as
follows:

Local LDAO1 Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/InittEM/Name/Comment
All - - -
1 #NAME-START A 20
1 #NAME-END A 20
S2L1

In the command line, enter the command STOW.

The modified local data area is now ready to be referenced in the program.

Copyright © Software AG 2002 49

Step 5 Tutorial - Getting Started with Natural

Step 5

In the command line of the data area editor, enter the command EDIT PGMO01. As PGMOL is stored as an object
of type program, the program editor will automatically be invoked.

As the defined data are now located in two data areas, the DEFINE DATA statement in the program must now
reference the global data area GDAO1 as well as the local data area LDAO1.

In the line which contains DEFINE DATA, enter the command ".1(1)" to insert one empty line. Type in
GLOBAL USING GDAO01 in the empty line.

The DEFINE DATA statement block should now look as follows:

DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE

Step 6

Moreover, we will change the instructions for the output produced by the program: we will add a WRITE TITLE
statement and modify the DISPLAY statement.

Using the program example below, modify the program to include the WRITE TITLE statement (above the
DISPLAY statement) and the new format in the DISPLAY statement. Use the line command ".I" to create the
empty lines you need for these modifications. Also, add some comments at the top of the program to indicate the
changes you have made.

The WRITE TITLE statement used in this program produces a multiple line title in the resulting report. The
slash (/) notation causes a line advance. As nothing else is specified, the title lines will be displayed centered and
not underlined.

50 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 6

The revised program - particularly the DEFINE DATA, WRITE TITLE and DISPLAY statements blocks -
should now look as follows:

Program PGMO1.:

* Example Program 'PGMO1’ for User’s Guide Tutorial
* PROGRAM NOW USES A LOCAL DATA AREA
* A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
* THE DISPLAY STATEMENT HAS BEEN CHANGED
*
DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE *
REPEAT
*
INPUT USING MAP '"MAPO1’
IF #NAME-START ="
ESCAPE BOTTOM
END-IF
MOVE #NAME-START TO #NAME-END
*
RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
THRU #NAME-END
IF LEAVE-DUE >= 20
PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
RESET #MARK
END-IF
*
WRITE TITLE / *** PERSONS WITH 20 OR MORE DAYS LEAVE DUE **
/" ARE MARKED WITH AN ASTERISK ~ **/ *
DISPLAY 23X /I[N AM E' NAME
3X'/[DEPT" DEPT
3X’//LVIDUE' LEAVE-DUE
33X #MARK *
END-READ
*
IF *COUNTER (RD1.) =0
REINPUT 'PLEASE TRY ANOTHER NAME’
END-IF

*

END-REPEAT

*

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE * TO #MARK

END-SUBROUTINE

END

Copyright © Software AG 2002 51

Step 7 Tutorial - Getting Started with Natural

Step 7
Once you have completed all changes, CHECK the program and correct any errors that may have occurred.
Then RUN the program; on the input screen, enter the name JONES.

Note the differences in the report output, which should now look as follows:

*»** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
»* ARE MARKED WITH AN ASTERISK rx
NAME DEPT LV *
DUE

JONES SALE30 25 *

JONES MGMT10 34 *

JONES TECH10 11

JONES MGMT10 18

JONES TECH10 21 *

JONES SALEOO 30 *

JONES SALE20 14

JONES COMP12 26 *

JONES TECHO02 25 *

When the execution of the program has finished without any errors, STOW the program for future modification

in Session 4.

End of Session 3.

52

Copyright © Software AG 2002

Tutorial - Getting Started with Natural Session 4 - Creating an External Subroutine

Session 4 - Creating an External Subroutine

Local Data Area

Map Program

Global Data Area

Subroutine

In Natural, asubroutinecan be defined either within a program, or as an external subroutine outside the program.

Until now, the subroutine MARK-SPECIAL-EMPLOYEES has been defined within the program using a
DEFINE SUBROUTINE statement. In this session, the subroutine will be defined as a separate object external to
the program.

Because both internal and external subroutines are invoked with a PERFORM statement, only minimal changes
to the program are required.

Step 1

If program PGMO1 is not already in the program editor, enter the code "E" and name PGMO01 on the
Development Functions menu.

Make a copy of it by saving it under a different name: in the command line of the editor, enter the command
SAVE SUBROL1.

Enter the command READ SUBROL to read the new copy into the work area of the editor.

Enter the command SET TYPE S to change the object typepirognamto subroutine

Copyright © Software AG 2002 53

Step 2 Tutorial - Getting Started with Natural

Step 2

Delete all lines of the subroutine except the comment lines, the DEFINE DATA and DEFINE SUBROUTINE
blocks, and the END statement, so that the program looks like the illustration below.

You can delete lines quickly by marking the first line of a block of lines with the line command ".X" and the last
line of a block with ".Y" and then entering the command "DX-Y" in the command line to delete the specified
block. Add a comment to identify this subroutine.

Subroutine SUBRO1:

* Example Subroutine: SUBRO1
* * *

DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE
*

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE ™* TO #MARK

END-SUBROUTINE

END

CHECK your changes and correct any errors. Then STOW the subroutine.

Step 3

Now that the subroutine is located in SUBROL1, the internal subroutine must be removed from program PGMOL1.

In the command line of the editor, enter READ PGMO1.

Step 4

Enter the command BOTTOM in the command line to move to the subroutine definition at the end of the
program. Delete the following lines, containing the internal subroutine definition, from the program:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE * TO #MARK
END-SUBROUTINE

54 Copyright © Software AG 2002

Tutorial - Getting Started with Natural

The program should now look like the example below:
Program PGMO1

* Example Program 'PGMO1’ for User’s Guide Tutorial
* PROGRAM NOW USES A LOCAL DATA AREA
* A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
* THE DISPLAY STATEMENT HAS BEEN CHANGED
* THE SUBROUTINE IS NOW EXTERNAL
*
DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE

*

REPEAT
*
INPUT USING MAP 'MAPOY’
IF #NAME-START ="’
ESCAPE BOTTOM
END-IF
MOVE #NAME-START TO #NAME-END
*
RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
THRU #NAME-END

IF LEAVE-DUE >= 20
PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
RESET #MARK
END-IF
*
WRITE TITLE / *** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
[+ ARE MARKED WITH AN ASTERISK >
*
DISPLAY 23X '/IN AM E’ NAME
3X’/IDEPT" DEPT
3X'//LVIDUE' LEAVE-DUE
3XI* #MARK

*

END-READ
*
IF *COUNTER (RD1.) =0
REINPUT '"PLEASE TRY ANOTHER NAME’
END-IF
*
END-REPEAT
END

Copyright © Software AG 2002

Step 4

55

Step 5 Tutorial - Getting Started with Natural

Step 5

CHECK the program and correct any errors. Then RUN the program to make sure that the results are the same
with an external subroutine as previously with an internal subroutine.

STOW the program for the next session.

End of Session 4.

56 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Session 5 - Editing a Map

Session 5 - Editing a Map

Local Data Area

Map Program

Global Data Area

Subroutine

In the previous sessions, the screen (map) prompting for an employee name was invoked via the INPUT USING
MAP statement. In this session, the map - MAPOL - will be edited to add an ending name for a range of
employees and some new layout elements.

The Naturalmap editoris used to create and modify screen layouts quickly and efficiently. In this session, you
will use several map edittine commandsndfield commands

® A line command begins with two periods (..). You enter it at the beginning of a line, and it applies to the
whole line in which you enter it.

e A field command begins with one period (.). You enter it at the beginning of a field, and it applies only to
the field in which you enter it.

(The sessions in the sectidatorial - Using the Map Editaalso show you how to apply these commands to
more than one line/field at a time.)

For detailed descriptions of all map editor commands, refediting a Mapin the section Map Editor.

Copyright © Software AG 2002 57

Step 1 Tutorial - Getting Started with Natural

Step 1

To invoke the map editor, enter the code "E" and type "M" on the Development Functions menu. The Edit Map
menu will be displayed:

16:51:35 reekk NATURAL MAP EDITOR ***** 2001-01-31
User SAG - Edit Map - Library SYSTEM

Code Function
D Field and Variable Definitions

E Edit Map

| Initialize new Map

H Initialize a new Help Map

M Maintenance of Profiles & Devices

S Save Map

T

W

?

Test Map
Stow Map
Help

Exit

Code ..l Name.. Profile .. SYSPROF _

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Test Edit

The map editor provides an extenshedp systemwhich you can invoke by entering a question mark (?) as code
on the Edit Map menu. Take time to look through this help system so that you know what kind of help is
available.

58 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 2

Step 2

To edit map MAPO1, enter the code "E" and nhame MAPO1 on the Edit Map menu. The editing screen of the map
editor will be displayed:

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Blnk T1 ?

D Al)
N 2~ M D &
[OD +
I (

001 =-010--+n-mrmemebo-030-—memebememt o5 0mrbemembocmcrbon0 7 Qmemrboen

oZ>»>

Please enter starting name : XXXXXXXXXXXXXXXXXXXX (. to exit)

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

The editing screen will be displayed in split-screen mode. The top portion of the screen can be used, for example,

to display view definitions; the upper right corner displays delimiter settings that apply for the map. The lower
portion of the screen is the map editing area.

Map fields may be defined directly on the screen or they can be selected from a view (DDM) that is displayed in
the upper portion of the screen. In this exercise, map fields will be defined directly on the screen.

Unlike the program editor and the data area editor, the map editor does not have a command line. Many

functions in the map editor are performed by using PF keys (the PF-key lines at the bottom of the screen show
which function is assigned to which key).

Copyright © Software AG 2002 59

Step 2 Tutorial - Getting Started with Natural

The two screens below show the map editor screen for map MAPOL1 as it will appear at the end of this session,
and the display of the screen as it will appear when MAPOL is invoked while executing program PGMO1.

FId #£NAME-END Fmt A20

AD=MIT"_’ ZP=OFF SG=OFF HE= Ris 0
AL= CD=__ Cv= Mod User
PM=__ DF= DY=

EM=

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXXXXX

Please enter starting name XXX XX XXX XX XXX (. to exit)
Ending name .EXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---

HELP Mset Exit <--- --- > - -+ < > Let
31/01/01 Software AG Employee Information SYSTEM
16:01:26.8
Please enter starting name (. to exit)
Ending name

60 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 3

Step 3

In the first line of the editing area, type in the following text, as shown below:

Software AG Employee Information

Then insert two blank lines by entering the line command "..1(2)" in the first six positions of the text you just
typed in. The map now looks as follows:

TD Bink T
|

oD

Ob _ Ob D CLS ATT DEL CLSATT DEL

?

&
+

o> >

D _ A

N A M D
I

I

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
Software AG Employee Information

Please enter starting name XXX XXX XXX X XXX (. to exit)

Step 4

Enter the line command "..C" in the first three positions of the "Software AG Employee Information” line. The
text is now centered:

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Blnk T1 ?

D _ Al)
N A M D &
[OoOD +
I(

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
Software AG Employee Information

oZ>r>

Please enter starting name XXX XXX X XXX XXX (. to exit)

Copyright © Software AG 2002 61

Step 5 Tutorial - Getting Started with Natural

Step 5

Enter (*DATE, (*TIME and (*LIBRARY-ID as shown below:

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Blnk T1 ?

AD _ Al)

AN ~ M D &

M1 oD +

ol (
001 --010---+----+----+---030---+----+----+---050---+----+----+---07 0---+----
(*DATE Software AG Employee Information (*LIBRARY-ID

(*TIME

Please enter starting name : XXXXXXXXXXXXXXXXXXXX (. to exit)

*DATE, *TIME, and *LIBRARY-ID are Natural system variables. System variables all begin with an asterisk
(*). When the program which invokes the map is executed, *DATE will display the current date, *TIME the

current time, and *LIBRARY-ID your current library. For more information on system variables, see the section
System Variablem the Natural Programming Reference documentation.

The opening parenthesis "(" in front of the system variablel&@imiter character. A delimiter indicates the
combination of class and attribute assigned to a field. In this case, the "(" delimiter identifies the fields as a

non-modifiable, intensified, output-only fields. The currently valid delimiter characters are shown in the top
right-hand corner of the map editing screen.

Class types (column CLS) shown on this screen include:

Class Type Description

T Text constant

A Input field

0] Output-only field (non-modifiable)

M Modifiable field (output and input field)

Attribute types (column ATT) shown on this screen include:

Attribute Type | Description
D Default (that is, non-intensified, non-blinking, ef{c.)
I Intensified

62

Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 5

By entering these delimiter characters directly in front of a field, you assign a class and attribute to that field.
Other class and attribute combinations are possible. It is also possible to assign another delimiter character to a
specific class/attribute combination.

After you have typed in the system variables along with the delimiter characters, press ENTER. The system
variable names entered will be transformed on the map to a series of Xs:

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Blnk TI ?
AD _ Al)
AN ~ M D &
M1 oD +
o1l (
001 --010---+----+----+---030---+----+----+---050---+----+----+---07 0---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXX XXX
Please enter starting name : XXXXXXXXXXXXXXXXXXXX (. to exit)

Copyright © Software AG 2002 63

Step 6 Tutorial - Getting Started with Natural

Step 6

Add another field to the map. Type in as shown in the screen below:

Ending name :X(20)

The colon (:) indicates that the field is modifiable for user input, and is displayed intensified.

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Blnk T1I ?

AD _ Al)

AN ~ MD &

M OD +

ol (
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXXXXX

Please enter starting name XXX XXX XXX X XXX (. to exit)
Ending name :x(20)

Press ENTER, and the new field is added, its length determined by the 20 Xs:

Ob _ Ob D CLS ATT DEL CLSATT DEL
. . TD Bink TI ?

AD _ Al)
AN ~ MD &
M1 OD +
ol (
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXXXXX

Please enter starting name : XXX XXXXXXXXX (. to exit)
Ending name : XXXXXXXXXXXXX XXX XX XX

64

Copyright © Software AG 2002

Tutorial - Getting Started with Natural

Step 7

This newly created field needs further definition before it can be processed in the program PGMOL1.

Enter the field command ".E" in the first two positions of the field , as shown below:

Step 7

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD Bink TI ?

AD _ Al)

AN ~ MD &

M1 OD +

ol (
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXXXXX

Please enter starting name :XXXXXXXXXXXXXXXXXXXX (. to exit)
Ending name . EXXXXXXXXXXXXXXXXXXX

This causes the extended field editing section to be invoked for the field you have marked with the command.
(Another way to invoke extended field editing function is to position the cursor anywhere in the field and press

PF5.)

The extended field editing section will be displayed in the top half of the screen:

Fld #001 Fmt A20

AD=MIT_’ ZP=0OFF SG=OFF HE= Ris 0
AL= Ch=__ Cv= Mod Undef
PM=__ DF= DY=

EM=

001 =-010--+nmrmrmemebe-030-mmemebememt e Q5 0mrbememb e oe0 7 Qmemrboenv

(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXX XXX XXX

Please enter starting name : XXX XXXXXXXXXX (. to exit)
Ending name . EXXXXXXXXXXXX XXX XX XX

The field "FId" displays as field name a number (#001). Natural automatically assign such a number to every

new field that is created in a map.

Copyright © Software AG 2002

65

Step 8 Tutorial - Getting Started with Natural

Step 8

Change the field name by typing #NAME-END over the field number. This name corresponds to the name of a
user-defined variable which is defined in the local data area used by the program PGMO1.

Fld #NAME-END Fmt A20

AD=MIT"’ ZP=0OFF SG=OFF HE= RIs 0
AlL= Ch=__ CQv= Mod Undef
PM=__ DF= DY=

EM=

001 --010---+----+----+---030---+----+----+---050---+----+----+---07 0---+----
(XXXXXXXX Software AG Employee Information (XXXXXXXX
(XXXXXXX XXX

Please enter starting name : XXXXXXXXXXXXXXXXXXXX (. to exit)
Ending name .EXXXXXXX XX XXX XXX XX XX

The map modifications are now complete. Press PF3 to leave the extended field editing section.

Press PF3 again to return to the Edit Map menu.

Step 9

Press PF4 to test the map. You will see a display of the map as it will appear when invoked from the program
PGMOL1:

31/01/01 Software AG Employee Information SYSTEM
17:11:00.9
Please enter starting name (- to exit)
Ending name

Press PF3 to end testing.

Enter the code "W" on the Edit Map menu to STOW the map for future use.

66 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 10

Step 10

To leave the Edit Map menu, enter the code (.), and you will be returned to the Development Functions menu.

Enter the command E PGMOL1 in the command line. The program editor will be invoked and program PGM01
will be read into the work area ready to be adjusted to the modified map.

Step 11

Until now, PGMO01 included the instruction:

MOVE #NAME-START TO #NAME-END

Thus, the start value for the list displayed by the program was also the end value, which meant that in the
example used the list contained only employees whose names were JONES. (Otherwise, all employees from
JONES to the end of the alphabet would have been included in the report.) Now the map allows us to specify
both a start valuand an end value for the list to be output. However, an IF statement must be added to the
program to handle a situation in which no end value is specified.

Change the program by inserting the following lines before the READ statement:
IF #NAME-END ="~

MOVE #NAME-START TO #NAME-END
END-IF

Add comments to reflect program changes.

Copyright © Software AG 2002 67

Step 11

The program should now look as follows:

Program PGMO1.:

* Example Program 'PGMO1’ for User’s Guide Tutorial
* PROGRAM NOW USES A LOCAL DATA AREA
* A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
* THE DISPLAY STATEMENT HAS BEEN CHANGED
* THE SUBROUTINE IS NOW EXTERNAL
* A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
*
DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE

*

REPEAT
*
INPUT USING MAP 'MAPOY’
IF #NAME-START ="’
ESCAPE BOTTOM
END-IF
IF #NAME-END ="~
MOVE #NAME-START TO #NAME-END

END-IF *

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
THRU #NAME-END

IF LEAVE-DUE >= 20

PERFORM MARK-SPECIAL-EMPLOYEES
ELSE

RESET #MARK
END-IF

*

Tutorial - Getting Started with Natural

WRITE TITLE / *** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***

/*** ARE MARKED WITH AN ASTERISK >
*
DISPLAY 23X /IN AM E’ NAME
3X’//IDEPT" DEPT
3X'//LVIDUE' LEAVE-DUE
3XI* #MARK

*

END-READ
*
IF *COUNTER (RD1.) =0
REINPUT '"PLEASE TRY ANOTHER NAME’
END-IF
*
END-REPEAT
END

68

Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 12

Step 12

CHECK the program and correct any errors that may be indicated.

Then RUN the program. On the input screen, enter the names JONES and JOY as start value and end value
respectively. The following output report will appear:

*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
» ARE MARKED WITH AN ASTERISK ok
NAME DEPT LV *
DUE

JONES SALE30 25 *

JONES MGMT10 34 *

JONES TECH10 11

JONES MGMT10 18

JONES TECH10 21 *

JONES SALEOO 30 *

JONES SALE20 14

JONES COMP12 26 *

JONES TECHO2 25 *

JOPER MARK29 32 *

JOUSSELIN FINAO1 45 *

STOW the program for future use.
To return to the Development Functions menu, enter a period (.) in the command line of the editor.

End of Session 5.

Copyright © Software AG 2002 69

Session 6 - Invoking a Subprogram Tutorial - Getting Started with Natural

Session 6 - Invoking a Subprogram

Local Data Area
Map Program
Global Data Area
Subroutine
Local Data Area
Subprogram
Param eter
Data Area

In Natural, botrsubprogramsandsubroutinescan be invoked from a program. They differ from one another in
the way data from the invoking program can be accessed.

As shown in Session 4 saibroutinecan access the same global data area as the invoking program. However, a
subprogramis invoked with a CALLNAT statement, and with this statement, parameters can be passed from the
invoking program to the subprogram. These parameters are the only data available to the subprogram from the
invoking program.

The passed parameters must be defined either within the DEFINE DATA PARAMETER statement of the
subprogram, or in a parameter data area used by the subprogram.

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram
are defined.

In this session, you will create a subprogram with a parameter data area and a local data area. Moreover, a
CALLNAT statement to invoke the subprogram will be added to the main program; also the main program’s
local data area has to be modified. In the subprogram, the employees selected by the main program will be the
basis to select the corresponding vehicle information from the VEHICLES file. As a result, the report will
contain vehicle information as well as employees information.

70 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 1

Step 1
First, the main program'’s local data area, LDAO1, must be modified.

On the Development Functions menu, enter the code "E" (Edit Object) and hame LDAOL. The data area editor
will be invoked, and the local data area LDAO1 will be read into the editing area. LDAO1 should appear as
follows:

Local LDAO1 Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - -
1 #NAME-START A 20
1 #NAME-END A 20
Step 2

Add the variables #PERS-ID, #MAKE and #MODEL to the local data area, as show below. They will be
referenced in the CALLNAT statement to be added to the program. The local data area now looks as follows:

Local LDAO1 Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/InittEM/Name/Comment
All - -
1 #NAME-START A 20
1 #NAME-END A 20
1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

CHECK and STOW the local data area.

Step 3

With minor modifications it is possible to use the local data area LDAO1 to create the parameter data area that
will be needed for the subprogram. (Instead of creating a separate parameter data area, it would also be possible
to define the parameter data directly within the subprogram’s DEFINE DATA PARAMETER statement.)

Make a copy of LDAO1 by saving it under a different name: in the command line of the editor, enter the
command SAVE PDAO2.

Then enter the command READ PDAO?2 to read the new copy into the editor.

Then enter the command SET TYPE PARAMETER to change the data area type from Local to Parameter.

Copyright © Software AG 2002 71

Step 4 Tutorial - Getting Started with Natural

Step 4
With the line command ".D", delete the first two lines:

1 #NAME-START A 20
1 #NAME-END A 20

The parameter data area now looks as follows:

Parameter PDA0O2 Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/InityEM/Name/Comment
All - - -
1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

CHECK the parameter data area and correct any errors, and then STOW it.

Step 5

Like a program, a subprogram can have its own local data area. This will be created now. First enter the
command CLEAR to clear the contents of the editing area. Then change the data area type to Local with the
command SET TYPE LOCAL.

Step 6

In the first line of the editing area, enter the line command ".V (VEHICLES)" starting in column "T". The view
VEHICLES will be displayed listing all fields contained in that view. Select the following fields to be included
into the data area: PERSONNEL-ID, MAKE, and MODEL (see also Sessitr25. These fields will be
automatically incorporated into the local data area.

The new local data area should now appear as follows:

Local Library SYSTEM DBID 10 FNR 32
Command >+
I TL Name F Leng Index/IniyEM/Name/Comment
All - - -
V 1 VEHICLES-VIEW VEHICLES
2 PERSONNEL-ID A 8
2 MAKE A 20
2 MODEL A 20
Step 7

Enter the command SAVE LDAO2 to store the data area in source form. Then CHECK the data area, and correct
any errors if necessary. Then STOW the data area to compile it and store it in source and object form.

The local data area is now ready to be used by the subprogram.

72 Copyright © Software AG 2002

Tutorial - Getting Started with Natural Step 8

Step 8
The next step is to create the subprogram itself.

Leave the data area editor by entering a period (.) in the command line. On the Development Functions menu,
enter the code "E" (for Edit Object) and type "N" (for subprogram). The program editor will be invoked with an
empty work area.

Type in the subprogram as shown below. Then SAVE it under the name SPGM02 (SAVE SPGM02). CHECK it
and correct any errors, and then STOW it.

Subprogram SPGMO02:

* Example Subprogram 'SPGMO02’

* % *k%k *

DEFINE DATA

PARAMETER USING PDA02
LOCAL USING LDAO2

END-DEFINE

*

FD1. FIND (1) VEHICLES-VIEW WITH PERSONNEL-ID = #PERS-ID
MOVE MAKE (FD1.) TO #MAKE
MOVE MODEL (FD1.) TO #MODEL
ESCAPE BOTTOM

END-FIND

END

This subprogram receives the personnel number passed by the main program and uses this number as the basis of
a search of the VEHICLES file.

Step 9
Now the main program must be modified to invoke the subprogram.

Read the program into the editor with the command READ PGMO01, and insert the following statements
immediately before the WRITE TITLE statement:

RESET #MAKE #MODEL
CALLNAT 'SPGM02' PERSONNEL-ID #MAKE #MODEL

Some of the parameters passed in the CALLNAT statement are defined in the global data area, and some in the
local data area. Note also that the variables defined in the parameter data area of the subprogram need not have
the same name as the variables in the CALLNAT statement; it is only necessary that they match in sequence,
format, and length.

Copyright © Software AG 2002 73

Step 10 Tutorial - Getting Started with Natural

Step 10

As the program receives vehicle information from the subprogram, the DISPLAY statement must be expanded as
follows:

Previous DISPLAY Statement:

DISPLAY 23X '/IN AM E’ NAME
3X'/IDEPT" DEPT
3X'/ILVIDUE’ LEAVE-DUE
3XI #MARK

Expanded DISPLAY Statement:

DISPLAY '/IN AME' NAME
2X’/IDEPT" DEPT
2X’/ILV-/DUE’ LEAVE-DUE

v #MARK
2X'IIMAKE’ #MAKE
2X’[IMODEL’ #MODEL

74 Copyright © Software AG 2002

Tutorial - Getting Started with Natural

After you have made all modifications, the program should look as follows:

Program PGMO1.:

* Example Program 'PGMO1’ for User’s Guide Tutorial
* PROGRAM NOW USES A LOCAL DATA AREA
* A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
* THE DISPLAY STATEMENT HAS BEEN CHANGED
* THE SUBROUTINE IS NOW EXTERNAL
* A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
* A SUBPROGRAM PROVIDES VEHICLE INFORMATION
*
DEFINE DATA
GLOBAL USING GDAO1
LOCAL USING LDAO1
END-DEFINE

*

REPEAT
*
INPUT USING MAP 'MAPOY’
IF #NAME-START ="’
ESCAPE BOTTOM
END-IF
IF #NAME-END ="~
MOVE #NAME-START TO #NAME-END
END-IF
*
RD1. READ EMPLOYEES-VIEW
BY NAME
STARTING FROM #NAME-START
THRU #NAME-END

IF LEAVE-DUE >= 20
PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
RESET #MARK
END-IF
*
RESET #MAKE #MODEL
CALLNAT 'SPGM02' PERSONNEL-ID #MAKE #MODEL
WRITE TITLE / *** PERSONS WITH 20 OR MORE DAYS LEAVE DUE **
/" ARE MARKED WITH AN ASTERISK ~ **J/
*
DISPLAY /N AM E' NAME
2X'[DEPT' DEPT
2X "lILVIDUE' LEAVE-DUE
" #MARK
2X 'IMAKE' #MAKE
2X '[MODEL’ #MODEL
END-READ
*
IF *COUNTER (RD1.) = 0
REINPUT 'PLEASE TRY ANOTHER NAME’
END-IF
*
END-REPEAT
END

Copyright © Software AG 2002

Step 10

75

Step 11 Tutorial - Getting Started with Natural

Step 11

Once the program modifications have been made, CHECK the program and correct any errors.

Then RUN the program. Enter JONES and JOY as starting and ending hames on the input screen. The report
produced by the program now looks as follows:

*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
» ARE MARKED WITH AN ASTERISK b
NAME DEPT LV MAKE MODEL
DUE

JONES SALE30 25 CHRYSLER * IMPERIAL
JONES MGMT10 34 CHRYSLER * PLYMOUTH
JONES TECH10 11 GENERAL MOTORS CHEVROLET
JONES MGMT10 18 FORD ESCORT
JONES TECH10 21 GENERAL MOTORS * BUICK
JONES SALEOO 30 GENERAL MOTORS * PONTIAC
JONES SALE20 14 GENERAL MOTORS OLDSMOBILE
JONES COMP12 26 DATSUN * SUNNY
JONES TECHO02 25 FORD * ESCORT 1.3
JOPER MARK29 32 *
JOUSSELIN FINAO1 45 RENAULT * R25

After the program has been executed, STOW it for future reference.

End of Session 6.

76 Copyright © Software AG 2002

Tutorial - Using the Map Editor Tutorial - Using the Map Editor

Tutorial - Using the Map Editor

This tutorial is not intended to be a comprehensive description of the full range of possibilities provided by the
Natural map editor. Rather, these sessions represent a general introduction to how the map editor may be used.
Therefore, explanations are kept to a minimum. For a full description of all functions and features, see the
sectionMap Editor

It this important that you work through the sessions in the sequence below.

The Natural map editor is used to crea@ps(screen layouts) referenced in a program. The map editor allows
direct manipulation of fieldfor screen layoutextended field editintacilitates the definition of fields;

processing rulesvithin the map can be associated with these fields. Once a map has been created, it may be
stored in the Natural system file from where it may be invoked by a Natural program using a WRITE USING
MAP or INPUT USING MAP statement.

This section covers the following topics:

Components of the Map Editor

Invoking the Map Editor

Session 1 - Designing a Map, Line and Field Commands
Session 2 - Processing Rules

Session 3 - Extended Field Editing

Session 4 - INPUT USING MAP

Session 5 - WRITE USING MAP, Fields from a View

Copyright © Software AG 2002 77

Components of the Map Editor Tutorial - Using the Map Editor

Components of the Map Editor

The following diagram gives an overview of the various sections of the map editor.

r Edit Map — Map P rafile
Menu Maintenance
Local Data Definitions M ap testing
+| Farameter Definitions
Field Definitions hap Editing Define
Surrmary SCreen ap Settings
—y —
Processing E}{Itrn_anltéed Array i”t?l“-"
ie i able
Rules Editing Definition Definition

78 Copyright © Software AG 2002

Tutorial - Using the Map Editor Invoking the Map Editor

Invoking the Map Editor

On the Natural Main Menu, select "Development Functions”. The Development Functions menu will be
displayed.

For the sessions in this tutorial, change the mode to "Structured" if you are not working in structured mode
already. (If you are currently working in reporting mode, enter an "S" in the first position of the Mode field.)

Then enter an "E" (Edit) in the Code field and an "M" (Map) in the Type field. The Edit Map menu will be
displayed:

13:40:54 *reekk NATURAL MAP EDITOR ***** 2001-01-31
User SAG - Edit Map - Library SYSTEM

Code Function
D Field and Variable Definitions

E Edit Map

| Initialize new Map

H Initialize a new Help Map

M Maintenance of Profiles & Devices

S Save Map

T

W

?

Test Map
Stow Map
Help

Exit

Code ..l Name .. Profile .. SYSPROF_

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Test Edit

The Edit Map menu is the main menu of the Natural map editor.

Note:

The map editor contains an extensive help system. Anytime you require help, enter a question mark (?) in the
field for which you wish further information. This will invoke the online help for that field. If a field does not

have an individual help assigned, a help menu will be displayed, from which you may select the desired item of
information.

Copyright © Software AG 2002 79

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

Session 1 - Designing a Map, Line and Field Commands

On the Edit Map menu, enter an "I" (Initialize new Map) in the Code field and MAPOO1 in the Name field. The
Define Map Settings For Map screen will be invoked:

13:43:07 Define Map Settings for MAP 2001-01-31

Delimiters Format Context

Cls AttCD Del Page Size 23 Device Check

BLANK Line Size 79 WRITE Statement _
? Column Shift ... 0 (0/1) INPUT Statement X
Layout Help

T D

T 1

A D _

Al) dynamic N (Y/N) as field default N (Y/N)
AN ~ Zero Print N (Y/N)
M D
M |
O D
(O

& Case Default ... UC (UC/LC)
Manual Skip N (Y/N) Automatic Rule Rank 1

+ Decimal Char Profile Name SYSPROF
(Standard Keys .. N (Y/N)

Justification .. L (L/R) Filler Characters
Print Mode e
Optional, Partial
Control Var Required, Partial
Optional, Complete ...
Apply changes only to new fields? N (Y/N) Required, Complete ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Move the cursor to the "Filler Characters" section of the screen. Type in an underscore (_) after each of the four

options as shown below:

Justification .. L (L/R) Filler Characters
Print Mode

o Optional, Partial _
Control Var Required, Partial _

Optional, Complete ... _
Apply changes only to new fields? N (Y/N) Required, Complete ... _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

This will cause any empty positions within an input field on the map to be filled with the undersgorehis
enables the user to see the exact position and length of a field, which makes entering input easier.

Ignore the other map settings for the time being and press ENTER. Press ENTER again. The map editing screen

will be invoked:

Ob _ Ob D CLS ATT DEL CLSATT DEL

TD Bink TI ?
D _ Al)
N A M D &
[OoOD +
|

oZZ>r»>

(

001 --010--—4--=-rmmemr-Q30mmwrmmrmbromerbmeeQB5Qnmerbmmmb rcmeboee Q7 Ommeboene

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full << > Let

The map editing screen will appear in split-screen format, the top half displaying the delimiter characters which

are valid for the map to be created, while the bottom half is the area where you actually design a map.

Copyright © Software AG 2002 81

Session 1 - Designing a Map, Line and Field Commands

Tutorial - Using the Map Editor

In the first line of the editing area, enter the line command "..F*", and in the second line type in the text

PERSONNEL INFORMATION as shown below:

ob _ Ob D CLSATT DEL CLS ATT DEL
. . TD Bink T1 ?
AD _ Al)
AN ~ MD &
MI : OD +
o1 (
001 --010---t--rtwemt=--030---t-metmemmtee-Q5 0t mmmerbmmectoe- Q7 Ormmbooee
=
PERSONNEL INFORMATION

The result will be as follows:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . TD Bink T1 ?

D _ Al)
N ~ MD &
| © OD +
I (

001 =-010--+emrmrmemebe-030-mrmemebememb e Q5 0mrbememb e oe0 7 Qmemrboen

*

o> >

* Fkkkkkkkkkk

PERSONNEL INFORMATION

* Fkkkkkkk

Press PF9 to obtain the full-screen map editing area.

In the bottom line, enter the line command "..F*". The screen now appears as follows:

* * * *

* * *

PERSONNEL INFORMATION

* * * *

* * * * *

001 =-010--+--—-me=-030-——emebwmemb w05 0merbemembmrm a0 7 Omonobome

82 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Type in the line command "..C" in the first three positions of the text:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

..C SONNEL INFORMATION

As a result, the text will be centered.

Enter the following as shown on the screen below:

(*DATX PERSONNEL INFORMATION
¢TIMX

PLEASE ENTER CITY::X(20)
PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXX XXX XXX XXX XX XXX XXX XXXX

*DATX and *TIMX are Natural system variables which will display the current date and time respectively. The
opening parenthesis "(" is the delimiter for intensified output fields. The colon (;) is the delimiter for intensified
modifiable fields. The number of Xs indicate the length of the fields.

The map will appear as follows:

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX
PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXXX XX XXX XXX XXX XXX XXX

Type in the field command ".M" and move the cursor to the position indicatigdabyshown below:

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

.MEASE ENTER CITY ::XXXXXXXXXXXXXXXXXXXX
PLEASE ENTER NAME::XX
I

When you press ENTER, the text field where the command was entered will be moved to the cursor position:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *hkkkkkkhkkkhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

ENTER CITY 22 XXXXXXXXXXXXXXXXXXXX

PLEASE ENTER NAME: 2 XXXXXXXXXXXXXXXXXXXX XXX XXX XX XXX XXX XXX XXX
PLEASE

Copyright © Software AG 2002 83

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

Enter the line command "..M" as shown below and move the cursor to the position indicated:

*hkkkkkkhkk *% *kkkkkkkhkkhhkkkhkk *% *kkkkkkkkkkhhkkhkkkhrrkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

.M ENTER CITY:XXXXXXXXXXXXXXXXXXXX
PLEASE ENTER NAME:: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXX
[l LEASE

As a result, the line where the command was entered will be moved to the line after the one in which the cursor
was positioned:

Fkk * Fkkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::: XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX
PLEASE
ENTER CITY 1z XXXXXXXXXXXXXXXXXXXX

Enter the line command "..J" as shown below:

*kkkkkkkk * Fkkkkkkk * Fkkkkkkkhkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XX
.J ASE
ENTER CITY 22 XXXXXXXXXXXXXXXXXXXX

As a result, the line where the command was entered and the line below it will be joined:

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

84 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Type in some additional text in the same order and position as below:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION OF TEXT IS

FOR FURTHER DEMONSTRATION
OF THE MOVE

COMMANDS

Press ENTER.

Now type in the field command ".M" twice as shown below to move a block of fields:

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

.MIS PORTION OF TEXT IS
FOR FURTHER DEMONSTRATION
OF THE MOVE

.MMMANDS

Copyright © Software AG 2002

85

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

Move the cursor to the position indicated above. As a result, the following block of fields will be moved to the
following position, the top left corner of the block being placed at the cursor position:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

OF TEXT IS
DEMONSTRATION

THIS PORTION
FOR FURTHER
OF THE MOVE
COMMANDS

The position and size of the fields where the commands are entered determine the size of the block of fields that
is moved, as shown above.

Enter the field command ".M" twice as shown below and move the cursor to the position indicated:

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX

M TEXT IS
.MMONSTRATION

THIS PORTION 1]
FOR FURTHER

OF THE MOVE

COMMANDS

86 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

The field and block sizes are marked again. Note that the cursor marks the target position of the top left corner of
the whole blocknot that of the top left field within the block. The result will be the following:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION OF TEXT IS

FOR FURTHER DEMONSTRATION
OF THE MOVE

COMMANDS

Enter the command ".M" three times to determine the entire block of fields as shown below:

* * F*kkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::: XXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX

I

.MIS PORTION OF TEXT IS
FOR FURTHER .MMONSTRATION
OF THE MOVE

.MMMANDS

Move the cursor to the position indicated above.

Copyright © Software AG 2002 87

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

The block of fields will be moved to the position shown below:

*hkkkkkkhkk *% *kkkkkkkhkkhhkkkhkk *% *kkkkkkkkkkhhkkhkkkhrrkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION OF TEXT IS

FOR FURTHER DEMONSTRATION
OF THE MOVE

COMMANDS

Enter the line command "..M" twice as shown below:

Fkk * Fkkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::: XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX

.M THIS PORTION OF TEXT IS
FOR FURTHER DEMONSTRATION
OF THE MOVE

.M COMMANDS

Move the cursor to the position indicated above.

The block of lines marked above will be placed below the line in which the cursor is positioned:

* * * * * * * * * *

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXX
PLEASE ENTER CITY 22 XXXXXXXXX XXX XXX XX XXX

THIS PORTION OF TEXT IS

FOR FURTHER DEMONSTRATION
OF THE MOVE

COMMANDS

88 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Enter the command ".T" as shown below:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION .T TEXTIS
FOR FURTHER DEMONSTRATION

OF THE MOVE

COMMANDS

As a result, the rest of the line, starting from the field in which the command was entered, will be deleted:

* * Fkkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:: XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXX XXX XX XXX XXX

THIS PORTION

FOR FURTHER DEMONSTRATION
OF THE MOVE

COMMANDS

Enter the field command ".D" as shown below:

Fkkkkk *% *% *hkkkkkkhkkhhkkkhrk *% *% *hkkhkkkhkkhhkkkhrk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXX XXX XXX XX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION

FOR .DRTHER DEMONSTRATION
OF THE MOVE

COMMANDS

Copyright © Software AG 2002 89

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

The field marked with the command will be deleted:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION

FOR DEMONSTRATION
OF THE MOVE

COMMANDS

Enter the field command ".M" as shown below; then move the cursor to the position indicated:

* * F*kkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::: XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XX XX
PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX

THIS PORTION

FOR 1] .MMONSTRATION
OF THE MOVE

COMMANDS

The field marked with the command will be moved to the cursor position:

Fkkkkk *% *% *kkkhkkkhkkhhkkkhrk *% *% *hkkhkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

THIS PORTION

FOR DEMONSTRATION
OF THE MOVE
COMMANDS

920 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Enter the line command "..D" twice as shown below to delete a block of lines:

*hkkkkkkhkk *% *kkkkkkkhkkhhkkkhkk *% *kkkkkkkkkkhhkkhkkkhrrkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

.D THIS PORTION
FOR DEMONSTRATION
OF THE MOVE

.D COMMANDS

*hkkkkkkhkk *% *kkkhkkkhkkhhkkkhrk *% *kkkkkkkkkkhhkkhkkkhrrkk *%

70 IS o SRy Ty MNAUN SN 1o BRSNS o S

The block of lines delimited by the commands will be deleted:

* * F*kkkkkkkkkk * Fkkkkkkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::: XXXXXXXXXXXXXXXXXXXX XXX XX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXX XXX XXX XXX XXX

001 =-010--+nmmrmemebe-030-mmemebememb e Q5 0mrbememb e crboe0 7 Qmemrboenv

Copyright © Software AG 2002

91

Session 1 - Designing a Map, Line and Field Commands Tutorial - Using the Map Editor

Enter the line command "..14" as shown below:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME::XXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX
.14

Fkkkkk *% *% *kkkhkkkhkkkhkkkhrk *% *% *kkkhkkkhkkkhkkkhkk *%

70 IS o SRy Ty MNAUN SN 1o BRSNS o S

Four empty lines will be inserted, and the bottom line with the asterisks will be moved four lines down.

92 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 1 - Designing a Map, Line and Field Commands

Press PF4 to test the map:

Fkkkkk *% *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk *%

97-01-31 PERSONNEL INFORMATION
14:14:21

PLEASE ENTER NAME:
PLEASE ENTER CITY:

Press PF3 to end testing of the map. The map editing screen will appear again.

Press PF3 again to end map editing. The Field and Variable Definitions Summary screen will appear. This will
be discussed in a later session.

Press ENTER. The Edit Map menu will appear with Name set to MAPOOL. Enter "S" in the Code field. The map
is now saved in source form.

End of Session 1.

Copyright © Software AG 2002 93

94

Session 2 - Processing Rules Tutorial - Using the Map Editor

Session 2 - Processing Rules

On the Edit Map menu, enter the code "E" and hame MAPOQO1 (if it is not already entered).

The map editing screen will appear in split-screen mode with map MAPQOO1 being read into the editing area.

Enter the command ".P" as shown below:

Ob Ob D CLSATT DEL CLSATT DEL
. . TD Blnk T1 ?

D _ Al)
N A M D &
[OD +
I

070 IS o USRIy Ty MR SN 1o BRSNS o S

Fkkkkk *% *% *kkkkkkkkkk

oZ>r>

Fkkkkk *% *% *kkkhkkkkkkkhkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME: .P XXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 2 - Processing Rules

This will invoke theprocessing ruleeditor for the field in which the command was entered:

Variables used in current map Mod
#002(A40)
#001(A20)

Rule Field #002
> >+RankO0 SO L1 Struct Mode
ALL ...+...10..+...+...+..30...+. . .+ .. .+.50. . +. . .+..+..70.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP Mset Exit Test -- - + Full Sc= Let

Type in the following processing rule:

Rule Field #002
> >+RankO0 SO L1 Struct Mode
ALL ...+...10..+....+....+...30...+....+....+...50..+...+....+...70..

0010 *

0020 IF & ="'’ REINPUT 'PLEASE TYPE IN A NAME’

0030 MARK *&

0040 END-IF

0050 *

0060

0070

0080

0090

0100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

HELP Mset Exit Test -- - + Full Sc= Let

The ampersand (&) in the processing rule will be dynamically substituted by the name of the field to which the
processing rule is attached.

Copyright © Software AG 2002 95

Session 2 - Processing Rules Tutorial - Using the Map Editor

Press ENTER. Then press PF3 to return to the map editing screen.

Then press PF4 to test the map.

Now you may also test the processing rule: press ENTER. As a result, the processing rule will be executed:

01-01-31 PERSONNEL INFORMATION
14:21:56

PLEASE ENTER NAME:
PLEASE ENTER CITY:

PLEASE TYPE IN A NAME

Note:
The text PLEASE TYPE IN A NAME may not necessarily appear at the bottom of the screen (as shown

above) but on another line, depending on the position of the message line as set by the Natural
administrator.

Press CLEAR to end testing of the map. The map editing screen will appear again.

96 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 2 - Processing Rules

Enter the command ".P" in the same position as before. The processing rule for rank 0 of the field where the
command was entered will be displayed again.

Enter the command "P=5" as shown below:

Rule Field #002
> pP=5 >+Rank0 S5 L1 Struct Mode
ALL ...+..10..+...+...+..30..+. . .+..+.50..+..+..+..70.

0010 *

0020 IF & =’ " REINPUT 'PLEASE TYPE IN A NAME’

0030 MARK *&

0040 END-IF

0050 *

0060

0070

0080

0090

0100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

HELP Mset Exit Test -- - + Full Sc= Let

As a result, the processing rule which previously was assigned rank 0 will now be assigned rank 5 (processing
rules are processed in ascending order of rank, starting with rank 0).

Enter the command PO as shown below:

Rule Field #002
> PO >+Rank5 S5 L1 Struct Mode
ALL+...10.. .+ .+..+..30..+. .. .+..+..50.+..+..+..70..

0010 *

0020 IF & =" " REINPUT 'PLEASE TYPE IN A NAME’

0030 MARK *&

0040 END-IF

0050 *

0060

0070

0080

0090

0100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

HELP Mset Exit Test -- - + Split Sc= Let

Copyright © Software AG 2002 97

Session 2 - Processing Rules Tutorial - Using the Map Editor

An empty editor screen will be displayed, because there is no longer any processing rule assigned to rank 0.

Rule Field #002
> >+RankO0 SO L1 Struct Mode
ALL ...+...10..+...+...+..30...+. . .+ ... +.50. . +. . .+..+..70.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP Mset Exit Test -- - + Full Sc= Let

Type in the following processing rule:

Rule Field #002
> >+RankO0 SO L1 Struct Mode
ALL ...+...10..+....+....+...30...+....+....+...50..+...+....+...70..

0010 *

0020 IF & = MASK ('.") STOP

0030 END-IF

0040 *

0050

0060

0070

0080

0090

0100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

HELP Mset Exit Test -- - + Full Sc= Let

Press ENTER. Then press PF3 to return to the map editing screen.

98 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 2 - Processing Rules

Press PF3 again. The Field and Variable Definitions Summary screen will be invoked:

14:27:32 Field and Variable Definitions - Summary 2001-01-31

Cmd Field Name (Truncated) Mod Format Ru Lin Col

__ *DATX S D 2 2
__ *TIMX ST 3 2
__ #002 A40 1520
__ #001 A20 6 20

The fields contained in the map are listed in the order in which they appear on the map. The two user-defined
fields are preceded by a hash/number (#). In order to be able to stow the map, you must name these fields. Type

in the following names as shown below:

14:28:21 Field and Variable Definitions - Summary 2001-01-31

Cmd Field Name (Truncated) Mod Format Ru Lin Col

____*DATX S D 2 2
___*TIMX ST 32
____#NAME A40 1520
____#CITY A20 6 20

Press ENTER twice. The Edit Map menu will appear. Enter the code "W" to stow the map. The map MAPOO1 is

now stored in source and object form.

End of Session 2.

Copyright © Software AG 2002

99

Session 3 - Extended Field Editing Tutorial - Using the Map Editor

Session 3 - Extended Field Editing

On the Edit Map menu, enter the code "E" and hame MAPOQO1 (if it is not already entered). The map editing
screen will appear with map MAPQO1 being read into the editing area.

On the map, enter some additional text as shown below:

Ob _ Ob D CLSATT DEL CLSATT DEL
. . TD BInk T1I ?

D _ Al)
N A M D &
[OD +
|

oZs>»>

(
001 =-010--+emsmrmemebex030-mmemebememt e Q5 0mrbemembocmcrbon07 Qmemrbocnv

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:::XXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXX XXX XXX XXX XXX XXX

TYPEIN ?.TO STOP OR ?? FOR HELP.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full << > Let

The question mark (?) is the delimiter for intensified text fields.

100 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 3 - Extended Field Editing

Then enter the command ".E" as shown below:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. TD Bink T1 ?

Al)

MD &

D _
N/\
| OD +
|

o> >

(

070 IS o SISy Ty NSRS SN 1o BRSNS o S

*kkkhkkkhkk *% *kkkkkkkhkkhhkkkhhk *% *kkkkkkkkkk

*hkkkkkkhkk *%

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:.eXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

TYPE IN?. TO STOP OR?? FOR HELP.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full << > Let

Theextended field editinacility for the field in which the command was entered will appear:

Fld #NAME Fmt A40

AD=MIT’ ZP=0OFF SG=OFF HE= Ris 1
AL= Ch=__ Cv= Mod User
PM=__ DF= DY=

EM=

001 =-010--+emmrmemerbex030-mrmemebememb e Q5 0mrbememb e crboe0 7 Qmemrboenv

* Fkkkkkkkkkk Fkk

Fkk

(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:. EXXXXXXXXXXXXXXXXXXX XX XXX XXX XXX XXX XXX XXX
PLEASE ENTER CITY 2 XXXXXXXXXXX XXX XXX XXX

TYPE IN?. TO STOP OR?? FOR HELP.

Copyright © Software AG 2002

101

Session 3 - Extended Field Editing Tutorial - Using the Map Editor

In the field "Fmt" enter A20, and in the field "HE=" enter 'HELPOO1’ (in apostrophes!) as shown below:

Fld #NAME Fmt A20

AD=MIT"’ ZP=0OFF SG=OFF HE="HELP00Y' Ris 1
AL= CD=__ Cv= Mod User
PM=_ DF= DY=

EM=

070 IS o SISy Ty NSRS SN 1o BRSNS o S
(XXXXXXXX PERSONNEL INFORMATION
(XXXXXXXX

PLEASE ENTER NAME:. EXXXXXXXXXXXXXXXXXXX
PLEASE ENTER CITY 2 XXXXXXXXXXXXXXXXXXXX

TYPE IN?. TO STOP OR?? FOR HELP.

The field length is now reduced to 20. HELPOO1 (which is yet to be created) is now assigned as helproutine/help
map to the field.

Press PF3 to return to the map editing screen. Then press PF3 again to return to the Edit Map menu. Enter the
code "W" to stow map MAPQO1.

102 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 3 - Extended Field Editing

On the Edit Map menu, enter the code "H" and name HELPOO1. The Define Map Settings for HELPMAP screen
will be invoked.

The Page Size is set to 23, the Line Size to 79. Change the Page Size to 15 and the Line Size to 25 by typing over
the existing values.

The map settings should now look as below:

14:34:20 Define Map Settings for HELPMAP 2001-01-31
Delimiters Format Context
Cls AttCD Del Page Size 15 Device Check
BLANK Line Size 25 WRITE Statement
? Column Shift ... 0 (0/1) INPUT Statement X
_ Layout 00000
) dynamic N (Y/N) N

A Zero Print N (Y/N) Position Line Col
& Case Default ... UC (UC/LC)
Manual Skip N (Y/N) Automatic Rule Rank 1
+ Decimal Char Profile Name SYSPROF
(Standard Keys .. N (Y/N)
Justification .. L (L/R) Filler Characters
Print Mode e
Optional, Partial
Control Var Required, Partial
Optional, Complete ...
Apply changes only to new fields? N (Y/N) Required, Complete ...

T
T
A
A
A
M
M
(0]
(0]

—g—gZ~- 0T 0

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

Copyright © Software AG 2002 103

Session 3 - Extended Field Editing Tutorial - Using the Map Editor

When you press ENTER twice, the map editing screen will appear. Press PF9 to switch to full-screen mode:

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Split<< > Let
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

The portion of the screen not to be used is filled with lines of periods.

Enter some text as follows:

Typeinthe name of an ...
employee inthe first ...
field and press ENTER. ..o
You Will then receive ..o

a list of all employees ...,

of that name. e

For a list of employees
of a certain name who
live in @ certain City,cccooiiiiiee e
typeinanameinthe ...
firstfield and a City oooiiiie

in the second field
and press ENTER.

104 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 3 - Extended Field Editing

Then press PF3 to return to the Edit Map menu. Enter the code "W" to stow help map HELPO0O1.
Enter the code "T" and name MAPOOL1 to test MAPOOL1.

Enter a question mark (?) in the first position of the field entitted PLEASE ENTER NAME. Help map HELP0OO1
will be displayed:

01-01-31 PERSONNEL INFORMATION
15:12:06

PLEASE ENTER NAME: ?
PLEASE ENTER CITY:
+ +
TYPEIN.TO STOP ! !
I Type in the name of an !
I employee in the first !
| field and press ENTER. !
' You will then receive !
I a list of all employees !
I of that name. !
I I
I For a list of employees !
I of a certain name who !
I'live in a certain city, !
Itype in a name in the !
I first field and a city !
l'in the second field !
I'and press ENTER. !

dkkkkkkkkkkkkkkkkk | | *% *% *%

+ +

Press ENTER.
Press ENTER again to test the processing rule for the first field.
Press CLEAR to end testing. The Edit Map menu will appear again.

End of Session 3.

Copyright © Software AG 2002 105

Table of Contents Tutorial - Using the Map Editor

Session 4 - INPUT USING MAP

e If you have access to a copy of the program PROGO001, enter EDIT PROGO001 in the Command line of the
Edit Map menu. (By default, sample programs are provided in the system library SYSEXPG; ask your
natural administrator for details.)

PROGO001 will be read into the program editor. Make sure that the program is identical to the one shown
below.

e If you do not have access to a copy of PROGO001, enter EDIT PROGRAM in the Command line of the Edit
Map menu.

The program editor will be invoked. If necessary, CLEAR the program editor (with the command CLEAR).
Then type in the following program:

PROGO001:

** PROG001
*kkkkkhkkkk
DEFINE DATA LOCAL
01 #NAME (A20)
01 #CITY (A20)
01 PERS-VIEW VIEW OF EMPLOYEES
02 NAME
02 FIRST-NAME
02 CITY
END-DEFINE

*

REPEAT

*

INPUT USING MAP 'MAPO01’
*
IF #CITY NE '’ AND #NAME NE "’
FIND PERS-VIEW WITH NAME = #NAME AND CITY = #CITY
IF NO RECORDS FOUND
REINPUT 'NO ONE BY THIS NAME LIVING IN THIS CITY’
MARK *#CITY
END-NOREC
DISPLAY NOTITLE NAME FIRST-NAME CITY
END-FIND
ELSE
IF #NAME NE "’
FIND PERS-VIEW WITH NAME = #NAME
IF NO RECORDS FOUND
REINPUT 'PLEASE TRY ANOTHER NAME.’
END-NOREC
DISPLAY NOTITLE NAME FIRST-NAME CITY
END-FIND
END-IF
END-IF
*
END-REPEAT
END

CHECK the program and correct any errors. STOW the program under the name of PROGO001 (If no program
name is displayed in the top line of the editor, enter STOW PROGOO0L1. If the program name PROGO001 is
displayed, simply enter the command STOW).

Then enter the command RUN to execute the program. Map MAP0O1 will be displayed.

106 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 4 - INPUT USING MAP

» To see if everything works as intended

1.

2.

3.

Press ENTER without typing in anything. As a result, the message PLEASE TYPE IN A NAME will be
displayed.

Enter a question mark (?) in the first input field of the map. As a result, the help map "Type in the name of
... etc." will appear as a window on the map. - Press ENTER.

Enter the name MCKENNA in the first input field of the map. As a result, the message PLEASE TRY
ANOTHER NAME will be displayed.

. Enter the name JONES in the first input field of the map. As a result, the program will display the following

list:
NAME FIRST-NAME CITY

JONES VIRGINIA TULSA
JONES MARSHA MOBILE
JONES ROBERT MILWAUKEE
JONES LILLY BEVERLEY HILLS
JONES EDWARD CAMDEN
JONES MARTHA KALAMAZOO
JONES LAUREL BALTIMORE
JONES KEVIN DERBY
JONES GREGORY NOTTINGHAM

Keep pressing ENTER until you return to the map.

. Enter the name JONES in the first input field and the name of the city DUNFERMLINE in the second input

field. As a result, the message NO ONE BY THIS NAME LIVING IN THIS CITY will be displayed.

. Enter the name JONES in the first input field and the name of the town TULSA in the second input field.

As a result, the program will display the following list:

NAME FIRST-NAME CITY

JONES VIRGINIA TULSA

Press ENTER to return to the map.

. Enter a period (.) in the first input field. The program will be terminated, and you will be returned to the

program editor.

End of Session 4.

Copyright © Software AG 2002 107

Table of Contents Tutorial - Using the Map Editor

Session 5 - WRITE USING MAP, Fields from a View

Enter the command SAVE PROGO002 to save a copy of program PROGO001 under the new name of PROG002.
Then enter the command READ PROGO002 to read the newly created program PROGO02 into the work area.

Modify the program to match with the one on the next page.

PROGO002:

** PROG002

*hkkkkkkkk

DEFINE DATA LOCAL

01 #NAME (A20)

01 #CITY (A20)

01 PERS-VIEW VIEW OF EMPLOYEES
02 NAME
02 FIRST-NAME
02 CITY

END-DEFINE

*

REPEAT

*

INPUT USING MAP 'MAPO01’
*
IF #CITY NE ' AND #NAME NE '’
FIND PERS-VIEW WITH NAME = #NAME AND CITY = #CITY
IF NO RECORDS FOUND
REINPUT 'NO-ONE BY THIS NAME LIVING IN THIS CITY.’
MARK *#CITY
END-NOREC

AT START OF DATA
WRITE 'THE FOLLOWING EMPLOYEES LIVE IN' CITY
END-START
WRITE USING MAP '"MAP0OO03’
*
END-FIND
ELSE
IF #NAME NE "’
FIND PERS-VIEW WITH NAME = #NAME
IF NO RECORDS FOUND
REINPUT '"PLEASE TRY ANOTHER NAME"’
END-NOREC

WRITE USING MAP '"MAP002’

END-FIND
END-IF
END-IF
*
END-REPEAT
END

108 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 5 - WRITE USING MAP, Fields from a View

When you have made all changes, enter the command SAVE in the command line of the program editor to save
PROGO002.

In the command line of the program editor, enter the command EDIT MAP.
The Edit Map menu will be displayed. Enter the code "I" and hame MAPQ002.

The Define Map Settings For Map screen will be displayed. Change the Page Size to 60. Then type in an "X"
after "WRITE Statement" and type a blank over the "X" after "INPUT Statement".

When you press ENTER, the map editing screen will be displayed. In the top line of the screen, enter "V
EMPLOYEES". The fields definitions of the view (DDM) EMPLOYEES will be listed:

Ob V EMPLOYEES Ob D CLS ATT DEL CLSATT DEL
1 PERSONNEL-ID A8 . TD Blink TI ?

. FULL-NAME *Gl .

2 FIRST-NAME A20

3 MIDDLE-I Al . OD +

4 NAME A20 . O I (

5 MIDDLE-NAME A20

001 =-010--+-mmrmemebo-030-mmemebememtoe- Q5 0mrbemembmcmcrbon0 7 Qmemrboen

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full << > Let

In the editing area, enter the following:

Ob V EMPLOYEES Ob D CLSATT DEL CLSATT DEL
1 PERSONNEL-ID A8 . TD Blnk T1 ?

. FULL-NAME *G1

2 FIRST-NAME A20

3 MIDDLE-| AL . oD +

4 NAME A20 . O (

5 MIDDLE-NAME A20 .

001 --010--—4----tmmemr-Q30mmwmmmtromebmeeQB5Qmmerbmmmb rcmeboec Q7 Ommeboenn
NAME:(4

@

Copyright © Software AG 2002 109

Session 5 - WRITE USING MAP, Fields from a View Tutorial - Using the Map Editor

Two fields are now defined on the map using the field definitions of the fields NAME and FIRST-NAME taken
from the view. When you press ENTER, the screen will look as below:

Ob V EMPLOYEES Ob D CLS ATT DEL CLS ATT DEL
1 PERSONNEL-ID A8 . TD Bink TI1 ?

. FULL-NAME *G1

2 FIRST-NAME A20

3 MIDDLE-I Al . oD +

4 NAME A20 . O 1 (

5 MIDDLE-NAME A20

070 IS o SISy Ty NSRS SN 1o BRSNS o S
NAME: (XXXXXXXXXXXXXXXXXXXX
(XXXXXXXXXXKXXKXXXXKXXX

On the top line of the screen, type in a plus (+) sign over the "V". Repeat this step until the field "2 CITY"
appears in the list. Use the minus (-) sign if you want to scroll backward.

Use the command ".M" to move the field from the second line of the editing area to the position shown below.
Then enter "CITY:(2" as shown below:

Ob V EMPLOYEES Ob D CLS ATT DEL CLS ATT DEL

. FULL-ADDRESS *G1 . TD Bink TI ?

1 ADDRESS-LINE A20 . A D _ Al)

2CITY A20 . AN 7 MD &

3ZIP A0 . M I : oD +

4 POST-CODE A10 . O 1 (

5 COUNTRY A3 .

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
NAME:: (XX XXXXXXXXXXXX XXX XK (XXX XXX XX XXXXXXXXXXXX CITY:(2

The map should look as follows:

Ob V EMPLOYEES Ob D CLS ATT DEL CLSATT DEL

. FULL-ADDRESS *G1 . TD Bink T1I ?

1 ADDRESS-LINE A20 . AD _ Al)

2CITY A20 . AN 7 MD &

3ZIP A0 . M1 : OD +

4 POST-CODE Al0O . O (

5 COUNTRY A3 .

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

NAME: (XX XXX XXX XXX XXX XXX XXX XXX EX XXX XXX XXX XXKXXXXX CITY : (XXXXXXXX XXX XXX XXXXXX

Press PF3 to return to the Edit Map menu.

Enter the code "W" to stow map MAP002.

110 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 5 - WRITE USING MAP, Fields from a View

Enter the code "I" and name MAPO003. The Define Map Settings For Map screen will be displayed. Change the

Page Size to 60; mark "WRITE Statement" with an "X"; unmark "INPUT Statement”; and type in MAP0O2 after
"Layout”. The map settings should be as follows:

15:33:53 Define Map Settings for MAP 2001-01-31
Delimiters Format Context
Cls Att CD Del Page Size 60 Device Check

BLANK Line Size 79 WRITE Statement X
? Column Shift ... 0 (0/1) INPUT Statement
Layout MAPO002__ Help

T D

T 1

A D _

Al) dynamic N (Y/N) as field default N (Y/N)
AN ~ Zero Print N (Y/N)
M D
M |
O D
O 1

& Case Default ... UC (UC/LC)
Manual Skip N (Y/N) Automatic Rule Rank 1

+ Decimal Char Profile Name SYSPROF
(Standard Keys .. N (Y/N)

Justification .. L (L/R) Filler Characters
Print Mode e
Optional, Partial
Control Var Required, Partial
Optional, Complete ...
Apply changes only to new fields? N (Y/N) Required, Complete ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Let

When you press ENTER, the map editing screen will be displayed with the layout of map MAPOO2 in the edit
area.

Copyright © Software AG 2002 111

Session 5 - WRITE USING MAP, Fields from a View Tutorial - Using the Map Editor

Use the command ".T" to delete CITY :(XXXXXXXXXXXXXXXXXXXX.
Use the command ".M" to move the second of the remaining output fields to the right.
Insert the text "FIRST NAME:" into the line.

The map should now look as shown below:

Ob _ Ob D CLS ATT DEL CLSATT DEL
TD Bink T1 ?

ol (

070 IS o SISy Ty NSRS SN 1o BRSNS o S
NAME:(XXXXXXXXXXXXXXXXXXXX FIRST NAME: (XXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full << > Let

Press PF3 to return to the Edit Map menu.

Enter the code "W" to stow map MAPO0O03.

112 Copyright © Software AG 2002

Tutorial - Using the Map Editor Session 5 - WRITE USING MAP, Fields from a View

In the Command line, enter EDIT PROGO002.
The program editor will appear with program PROGO002 in the work area.
RUN the program. Map MAPO0O1 will be displayed.

Enter the name JONES and no city. The list produced by the program will now use MAPO0O2:

Page 1 2001-01-31 15:38:11
NAME: JONES VIRGINIA CITY: TULSA

NAME: JONES MARSHA CITY: MOBILE

NAME: JONES ROBERT CITY: MILWAUKEE
NAME: JONES LILLY CITY: BEVERLEY HILLS
NAME: JONES EDWARD CITY: CAMDEN
NAME: JONES MARTHA CITY: KALAMAZOO
NAME: JONES LAUREL CITY: BALTIMORE
NAME: JONES KEVIN CITY: DERBY

NAME: JONES GREGORY CITY: NOTTINGHAM

Press ENTER to return to MAPOO1.

Enter the name JONES and the city DERBY. Map MAPO003 will be displayed:

Page 2 2001-01-31 15:39:11

THE FOLLOWING EMPLOYEES LIVE IN DERBY
NAME: JONES FIRST NAME: KEVIN

Press ENTER again to return to MAPOQO1.
Enter a period (.) in the NAME field to return to the program. STOW the program.

End of Session 5.

Copyright © Software AG 2002 113

Designing User Interfaces - Overview Designing User Interfaces - Overview

Designing User Interfaces - Overview

The user interface of an application, that is, the way an application presents itself to the user, is a key
consideration when writing an application.

This section provides information on the various possibilities Natural offers for designing user interfaces that are
uniform in presentation and provide powerful mechanisms for user guidance and interaction.

When designing user interfaces, standards and standardization are key factors.
Using Natural, you can offer the end user common functionality across various hardware and operating systems.

This includes the general screen layout (information, data and message areas), function-key assignment and the
layout of windows.

This section covers the following topics:

® Screen Design
Defining the general layout of screens.

e Dialog Design
Designing user interfaces.

114 Copyright © Software AG 2002

Screen Design Screen Design

Screen Design

This section provides options to define a general screen layout:

Control of Function-Key Lines - Terminal Command %Y
Control of the Message Line - Terminal Command %M
Assigning Colors to Fields - Terminal Command %=
Outlining - Terminal Command %D=B

Statistics Line/Infoline - Terminal Command %X
Windows

Standard/Dynamic Layout Maps

Multilingual User Interfaces

Skill-Sensitive User Interfaces

Copyright © Software AG 2002 115

Control of Function-Key Lines - Terminal Command %Y Screen Design

Control of Function-Key Lines - Terminal Command %Y

With the terminal comman®Y you can define how and where the Natural function-key lines are to be
displayed.

Below is information on:

® Format of Function-Key Lines
® Positioning of Function-Key Lines
® Cursor-Sensitivity

Format of Function-Key Lines
The following terminal commands are available for defining the format of function-key lines:
%YN

The function-key lines are displayed in tabular Software AG format:

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

%YS

The function-key lines display the keys sequentially and only show those keys to which names have been
assigned (PFAmlugPF2=valuegetc.):

Command ===>
PF1=Help,PF3=EXxit,PF12=Canc

%YP

The function-key lines are displayed in PC-like format, that is, sequentially and only showing those keys to
which names have been assigned (RlseF2=valuegetc.):

Command ===>
F1=Help,F3=Exit,F12=Canc

Other Display Options
Various other command options are available for function-key lines, such as:

single- and double-line display,
intensified display,

reverse video display,

color display.

For details on these options, $¥ - Control of PF-Key Lineq the section Terminal Commands in the
Natural Programming Reference documentation.

116 Copyright © Software AG 2002

Screen Design Positioning of Function-Key Lines

Positioning of Function-Key Lines
%YB

The function-key lines are displayed at the bottom of the screen:

16:50:53 Fkk NATURAL ** 2001-01-30
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
_ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_ Help

_ Exit NATURAL Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Copyright © Software AG 2002 117

Positioning of Function-Key Lines Screen Design

%YT

The function-key lines are displayed at the top of the screen:

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc
16:50:53 wekkx NATURAL Fxxk* 2001-01-30
User SAG - Main Menu - Library XYZ
Function

_ Development Functions

_ Development Environment Settings
__ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

__Help

_ Exit NATURAL Session

Command ===>

118 Copyright © Software AG 2002

Screen Design Cursor-Sensitivity

%Y nn

The function-key lines are displayed on limeof the screen. In the example below the function-key line has
been set to line 10:

16:50:53 wekkx NATURAL *xxk* 2001-01-30
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings

__ Maintenance and Transfer Utilities
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc

- Debugging and Monitoring Utilities

_ Example Libraries

_ Other Products

__Help

_ Exit NATURAL Session

Command ===>

Cursor-Sensitivity
%YC

This command makes the function-key lines cursor-sensitive. This means that they act like an action bar on a PC
screen: you just move the cursor to the desired function-key number or name and press ENTER, and Natural
reacts as if the corresponding function key had been pressed.

To switch cursor-sensitivity off, you enter %YC again (toggle switch).

By using %YC in conjunction with tabular display format (%YN) and having only the function-key names
displayed (%YH), you can equip your applications with very comfortable action bar processing: the user merely
has to select a function name with the cursor and press ENTER, and the function is executed.

Copyright © Software AG 2002 119

Control of the Message Line - Terminal Command %M Screen Design

Control of the Message Line - Terminal Command %M

Various options of the terminal comma®dM are available for defining how and where the Natural message
line is to be displayed.

Below is information on:

® Positioning the Message Line
® Message Line Protection
® Message Line Color

Positioning the Message Line
%MB

The message line is displayed at the bottom of the screen:

16:50:53 Fikkk NATURAL ** 2001-01-30
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
_ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

_ Help

_ Exit NATURAL Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc
Please enter a function.

120 Copyright © Software AG 2002

Screen Design Message Line Protection

%MT

The message line is displayed at the top of the screen:

Please enter a function.
16:50:53 rkxk NATURAL *exx* 2001-01-30
User SAG - Main Menu - Library XYZ

Function

_ Development Functions

_ Development Environment Settings
__Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries

_ Other Products

__Help

_ Exit NATURAL Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Other options for the positioning of the message line are descriB&ll inControl of Message Linia the
section Terminal Commands in the Natural Programming Reference documentation.

Message Line Protection
%MP

The message line is switched from unprotected to protected mode or vice versa. In unprotected mode, the
message line can also be used for terminal input.

Message Line Color
%M-= color-code

The message line is displayed in the specified color (for an explanation of color codesssssitimeparameter
CD as described in the Natural Parameter Reference documentation).

Copyright © Software AG 2002 121

Assigning Colors to Fields - Terminal Command %=

Screen Design

Assigning Colors to Fields - Terminal Command %=

You can use the terminal comma¥te to assign colors to field attributes for programs that were originally not
written for color support. The command causes all fields/text defined with the specified attributes to be displayed
in the specified color.

If predefined color assignments are not suitable for your terminal type, you can use this command to override the

original

assignments with new ones.

You can also use the %= terminal command within Natural editors, for example to define color assignments
dynamically during map creation.

jram.

Codes| Description
blank | Clear color translate table.
F Newly defined colors are to override colors assigned by the pro
N Color attributes assigned by program are not to be modified.
(0] Output field.
M Modifiable field (output and input).
T Text constant.
B Blinking
C Italic
D Default
I Intensified
u Underlined
Reverse video
BG Background
BL Blue
GR |Green
NE Neutral
Pl Pink
RE Red
TU Turquoise
YE Yellow
122

Copyright © Software AG 2002

Screen Design Assigning Colors to Fields - Terminal Command %=

Example:
%=TI=RE,OB=YE

This example assigns the color red to all intensified text fields and yellow to all blinking output fields.

Copyright © Software AG 2002 123

Outlining - Terminal Command %D=B Screen Design

Outlining - Terminal Command %D=B

Outlining (boxing) is the capability to generate a line around certain fields when they are displayed on the
terminal screen. Drawing such "boxes" around fields is another method of showing the user the lengths of fields
and their positions on the screen.

Outlining is only available on certain types of terminals, usually those which also support the display of
double-byte character sets.

The terminal comman®D=B is used to control outlining. For details on this command, see the relevant section
in Terminal Commands in the Natural Programming Reference documentation.

Statistics Line/Infoline - Terminal Command %X

This terminal command controls the display of the Natural statistics line/infoline. The line can be used either as a
statistics line or as an infoline, but not both at the same time.

Below is information on:

® Statistics Line
e |[nfoline

Statistics Line

To turn the statistics line on/off, enter the terminal comn8aXd(this is a toggle function). If you set the
statistics line on, you can see statistical information, such as:

e the number of bytes transmitted to the screen during the previous screen operation,
e the logical line size of the current page,
e the physical line size of the window.

For full details regarding the statistics line, see the terminal com#tnals described in the Natural
Programming Reference documentation.

The example below shows the statistics line displayed at the bottom of the screen:

124 Copyright © Software AG 2002

Screen Design Statistics Line

> >+ Program POS Lib SAG
All A+ 20 03 A+ BB LT
0010 SET CONTROL 'XT’
0020 SET CONTROL "XI+'
0030 DEFINE PRINTER (2) OUTPUT 'INFOLINE’
0040 WRITE (2) 'TEXECUTING’ *PROGRAM 'BY’ *INIT-USER
0050 WRITE 'TEST OUTPUT’
0070 END
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
10=264,Al =292,L.=0 C=,LS=80,P =23,PLS=80,PCS=24,FLD=82,CLS=1,ADA=0

Copyright © Software AG 2002 125

Infoline Screen Design

Infoline

You can also use the statistics line agnémline where status information can be displayed, for example, for
debugging purposes, or you can use it as a separator line (as defined by SAA standards).

To define the statistics line as an infoline, you use the terminal command %XI+.

Once you have activated the infoline with the above command, you can define the infoline as the output
destination for data with the DEFINE PRINTER statement as demonstrated in the example below:

Example:

SET CONTROL 'XT’

SET CONTROL "XI+

DEFINE PRINTER (2) OUTPUT 'INFOLINE’

WRITE (2) 'EXECUTING’ *PROGRAM 'BY’ *INIT-USER
WRITE 'TEST OUTPUT’

END

When the above program is run, the status information is displayed in the infoline at the top of the output
display:

EXECUTING POS BY SAG
Page 1 2001-01-22 10:56:06

TEST OUTPUT

For further details on the statistics line/infoline, see the terminal com#Xras described in the Natural
Programming Reference documentation.

126 Copyright © Software AG 2002

Screen Design Windows

Windows

Below is information on:

e What is a Window?
e DEFINE WINDOW Statement
e INPUT WINDOW Statement

What is a Window?

A windowis that segment of a logical page, built by a program, which is displayed on the terminal screen.

A logical pageis the output area for Natural; in other words the logical page contains the current report/map
produced by the Natural program for display. This logical page may be larger than the physical screen.

There is always a window present, although you may not be aware of its existence. Unless specified differently
(by a DEFINE WINDOW statement), the size of the window is identical to the physical size of your terminal
screen.

You can manipulate a window in two ways:

® You can control the size and position of the window orpthesicalscreen
® You can control the position of the window on thgical page

Positioning on the Physical Screen

The figure below illustrates the positioning of a window on the physical screen. Note that the same section of the
logical page is displayed in both cases, only the position of the window on the screen has changed.

Logical Page
Logical Page
;’ """" =
| Window!
________ 1 I________-l
! Winduwi
Physical Screen Physical Screen

Copyright © Software AG 2002 127

What is a Window? Screen Design

Positioning on the Logical Page
The figure below illustrates the positioning of a window on the logical page.
When you change the position of the window onltiggcal page the size and position of the window on the

physical screemill remain unchanged. In other words, the window is not moved over the page, but the page is
moved "underneath" the window.

Logical Page
Logical Page
;’ """" il ;’ """" il
'Window "' Window
Fhysical Screen Physical Screen

128 Copyright © Software AG 2002

Screen Design DEFINE WINDOW Statement

DEFINE WINDOW Statement

You use the DEFINE WINDOW statement to specify the size, position and attributes of a window on the
physicalscreen

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement or
with the WINDOW clause of an INPUT statement.

Various options are available with the DEFINE WINDOW statement. These are described below in the context
of the example.

The following program defines a window on the physical screen.

Example:

DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST
SIZE 5*25
BASE 5/40
TITLE 'Sample Window’
CONTROL WINDOW
FRAMED POSITION SYMBOL BOT LEFT
INPUT WINDOW="TEST’
WITH TEXT 'message line’
COMMAND (AD=l) /
‘dataline 1’/
‘dataline 2’/
‘dataline 3’ 'long data line’
IF COMMAND = 'TEST2’
FETCH 'TWIND2'
ELSE
REINPUT ’invalid command’
END-IF
END

Thewindow-namadentifies the window. The nhame may be up to 32 characters long. For a window name, the
same naming conventions apply as for user-defined variables. Here the name is TEST.

The window size is set with the SIZE option. Here the window is 5 lines high and 25 columns (positions) wide.

The position of the window is set by the BASE option. Here the top left-hand corner of the window is positioned
on line 5, column 40.

With the TITLE option, you can define a title that is to be displayed in the window frame (of course, only if you
have defined a frame for the window).

With the FRAMED option, you define that the window is to be framed.

This frame is then cursor-sensitive. Where applicable, you can page forward, backward, left or right within the
window by simply placing the cursor over the appropriate symbol (<, -, +, or >; see POSITION clause below)
and then pressing ENTER. In other words, you are movingpgfieal pageunderneath the window on the

physical screen. If no symbols are displayed, you can page backward and forward within the window by placing
the cursor in the top frame line (for backward positioning) or bottom frame line (for forward positioning) and
then pressing ENTER.

Copyright © Software AG 2002 129

DEFINE WINDOW Statement Screen Design

With the POSITION clause of the FRAME option, you define that information on the position of the window on
the logical page is to be displayed in the frame of the window. This applies only if the logical page is larger than
the window; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

POSITION SYMBOL causes the position information to be displayed in form of symbols: "More: < - + >". The
information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame line.
LEFT/RIGHT determines whether the position information is displayed in the left or right part of the frame line.

You can define which characters are to be used for the frame with the terminal cotaRrahd.

¢ | The first character will be used for the famarnersof the window framd.

h | The second character will be used forlloeizontalframe lines.

v | The third character will be used for thertical frame lines.

Example:
Y%F=+-!

The above command makes the window frame look like this:

130 Copyright © Software AG 2002

Screen Design INPUT WINDOW Statement

INPUT WINDOW Statement

The INPUT WINDOW statement activates the window defined in the DEFINE WINDOW statement. In the
example, the window TEST is activated. Note that if you wish to output data in a window (for example, with a
WRITE statement), you use the SET WINDOW statement.

When the above program is run, the window is displayed with one input field COMMAND:

>r >+ Program TWIND Lib SAG
Bot ..+..l..+.2. .+, 3.+ 4+ 5467
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST I message line !
0060 SIZE 5*25 ! COMMAND !
0070 BASE 5/40 ! dataline 1 !

0080 TITLE 'Sample Window’ +More: + >---m-mo- +

0090 CONTROL WINDOW
0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’
0120 WITH TEXT 'message line’
0130 COMMAND (AD=I)/
0140 ‘’dataline 1’/
0150 ‘’dataline 2’/
0160 ‘’dataline 3'’long data line’
0170 IF COMMAND ="TEST2’
0180 FETCH 'TWIND2’'
0190 ELSE
0200 REINPUT 'invalid command’
0210 END-IF
0220 END
et L2040 804+ 5+, S22 L3

In the bottom frame line, the position information "More + >" indicates that there is more information on the
logical page than is displayed in the window.

To see the information that is further down on the logical page, you place the cursor in the bottom frame line on
the plus (+) sign and press ENTER.

Copyright © Software AG 2002 131

INPUT WINDOW Statement Screen Design

The window is now moved downwards. Note that the text "long data line" does not fit in the window and is
consequently not fully visible.

>r >+ Program TWIND Lib SAG
Bot ..+..1..+.2.+.3. +. 4. . +. 5. .+.6..+.7.
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST linvalid command !
0060 SIZE 5*25 ! dataline 2 !

0070 BASE 5/40 ! dataline 3 long data !
0080 TITLE 'Sample Window’ +More: - >--------- +

0090 CONTROL WINDOW
0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’
0120 WITH TEXT 'message line’
0130 COMMAND (AD=l) /
0140 ’dataline 1’/
0150 ‘dataline 2’/
0160 ’dataline 3’ ’long data line’
0170 IF COMMAND = 'TEST2’
0180 FETCH 'TWIND2
0190 ELSE
0200 REINPUT ’invalid command’
0210 END-IF
0220 END
et L+l 20 4080+ 445 +..822 L3

To see this hidden information to the right, you place the cursor in the bottom frame line on the ">" symbol and
press ENTER. The window is now moved to the right on the logical page and displays the previously invisible
word "line":

>r >+ Program TWIND Lib SAG
Bot ..+.l..+.2. . +. 3. +. 4.+ 5. 46T
0030 END-DEFINE

0040 * +----Sample Window-----+
0050 DEFINE WINDOW TEST linvalid command !
0060 SIZE 5*25 ! !

0070 BASE 5/40 Iline !

0080 TITLE 'Sample Window’ +More: < - —---m-e-- +

0090 CONTROL WINDOW
0100 FRAMED POSITION SYMBOL BOT LEFT

Message and Function-Key Lines

With the CONTROL clause, you determine whether the function-key lines, the message line and the statistics
line are displayed in the window or on the full physical screen.

® CONTROL WINDOW displays the lines inside the window.
® CONTROL SCREEN displays the lines on the full physical screen outside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

132 Copyright © Software AG 2002

Screen Design INPUT WINDOW Statement

Multiple Windows

You can, of course, open multiple windows. However, only one Natural window is active at any one time, that
is, the most recent window. Any previous windows may still be visible on the screen, but are no longer active
and are ignored by Natural. You may enter input only in the most recent window. If there is not enough space to
enter input, the window size must be adjusted first.

When TEST2 is entered in the COMMAND field, the second program TWIND?2 is executed.
Program TWIND2:

DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST2
SIZE 5*30
BASE 15/40
TITLE '"ANOTHER WINDOW'’
CONTROL SCREEN
FRAMED POSITION SYMBOL BOT LEFT
INPUT WINDOW="TEST2’
WITH TEXT 'message line’
COMMAND (AD=U) /
‘dataline 1’/
‘dataline 2’/
‘dataline 3’ 'long data line’
IF COMMAND ="TEST’
FETCH 'TWIND’
ELSE
REINPUT ’invalid command’
END-IF
END

Copyright © Software AG 2002 133

INPUT WINDOW Statement Screen Design

A second window is opened. The other window is still visible, but it is inactive.

message line

>r >+ Program TWIND Lib SAG
Bot ..+..1..+.2.+.3. +. 4. . +. 5. .+.6..+.7.
0030 END-DEFINE

0040 * +----Sample Window-----+

0050 DEFINE WINDOW TEST linvalid command ! Inactive
0060 SIZE 5*25 I COMMAND TEST2 ! Window
0070 BASE 5/40 ! dataline 1 ! -—
0080 TITLE 'Sample Window’ +More: + >--------- +

0090 CONTROL WINDOW

0100 FRAMED POSITION SYMBOL BOT LEFT
0110 INPUT WINDOW="TEST’

0120 WITH TEXT 'message line’

0130 COMMAND (AD=I) /

0140 ’dataline 1’/ +omeee ANOTHER WINDOW------- + Currently
0150 ‘’dataline 2’/ ! COMMAND ! Active
0160 ’dataline 3’ ’long data line’ ! dataline 1 ! Window
0170 IF COMMAND = 'TEST2’ ! dataline 2 ! -—
0180 FETCH 'TWIND2 +More: + >----mm-memeeeee +

0190 ELSE

0200 REINPUT 'invalid command’

0210 END-IF

0220 END

et L+ 2040804 +50 4822 L3

Note that for the new window the message line is now displayed on the full physical screen (at the top) and not
in the window. This was defined by the CONTROL SCREEN statement in the TWIND2 program.

For further details on the statements DEFINE WINDOW, INPUT WINDOW and SET WINDOW, see the
Natural Statementdocumentation.

134 Copyright © Software AG 2002

Screen Design Standard/Dynamic Layout Maps

Standard/Dynamic Layout Maps

As described in the sectidnutorial - Using the Map Editpastandard layoutan be defined in the map editor.
This layout guarantees a uniform appearance for all maps that reference it throughout the application.

When a map that references a standard layout is initialized, the standard layout becomes a fixed part of the map.

This means that if this standard layout is modified, all affected maps must be re-cataloged before the changes
take effect.

Dynamic Layout Maps

In contrast to a standard layoutlynamic layoutiloes not become a fixed part of a map that references it, rather
it is executed at runtime.

This means that if you define the layout map as "dynamic" on the Define Map Settings For Map screen in the

map editor (see the example below), any modifications to the layout map are also carried out on all maps that
reference it. The maps need not be re-cataloged.

08:46:18 Define Map Settings for MAP 2001-01-22
Delimiters Format Context
Cls AttCD Del Page Size 23 Device Check

BLANK Line Size 79 WRITE Statement _
? Column Shift ... 0 (0/1) INPUT Statement X
_ Layout STAN1_ Help

T D

T 1

A D

Al) dynamic Y (YIN) as field default N (Y/N)
AN 8 Zero Print N (Y/N)
M D
M |
O D
o 1

& Case Default ... UC (UC/LC)
Manual Skip N (Y/N) Automatic Rule Rank 1
+ Decimal Char Profile Name SYSPROF
(Standard Keys .. Y (Y/N)
Justification .. L (L/R) Filler Characters
Print Mode e
Optional, Partial _
Control Var Required, Partial _
Optional, Complete ... _
Apply changes only to new fields? N (Y/N) Required, Complete ... _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Let

For further details on layout maps, see the sedfiap Editor

Copyright © Software AG 2002 135

Multilingual User Interfaces Screen Design

Multilingual User Interfaces

Using Natural, you can create multilingual applications for international use.

Maps, helproutines, error messages, programs, subprograms and copycodes can be defined in up to 60 different
languages (including languages with double-byte character sets).

Below is information on:

Language Codes

Defining the Language of a Natural Object
Defining the User Language

Referencing Multilingual Objects
Programs

Error Messages

Edit Masks for Date and Time Fields

Language Codes

Each language hadanguage codéfrom 1 to 60). The table below is an extract from the full table of language
codes.

Language Code Language |Map Code in Object Nameg
1 English 1
2 German 2
3 French 3
4 Spanish 4
5 Italian 5
6 Dutch 6
7 Turkish 7
8 Danish 8
9 Norwegian |9
10 Albanian |A
11 Portuguese| B

The language code (left column) is the code that is contained in the system variable *LANGUAGE. This code is
used by Natural internally. It is the code you use to define the user language (see below). The code you use to
identify the language of a Natural object is thap coden the right-hand column of the table.

Example:

The language code for Portuguese is "11".
The code you use when cataloging a Portuguese Natural objectjis "B".

For the full table of language codes, see the system vatlabdGUAGE as described in the Natural
Programming Reference documentation.

136 Copyright © Software AG 2002

Screen Design Defining the Language of a Natural Object

Defining the Language of a Natural Object

To define the language of a Natural object (map, helproutine, program, subprogram or copycode), you add the
corresponding map code to the object name. Apart from the map code, the name of the object must be identical
for all languages.

In the example below, a map has been created in English and in German. To identify the languages of the maps,
the map code that corresponds to the respective language has been included in the map name.

Example of Map Names for a Multilingual Application:

DEMOL = English map (map code 1)
DEMO2 = German map (map code 2)

Defining Languages with Alphabetical Map Codes
Map codes are in the range 1-9, A-Z or a-y. The alphabetical map codes require special handling.

Normally, it is not possible to catalog an object with a lower-case letter in the name - all characters are
automatically converted into capitals.

This is however necessary, if for example you wish to define an object for Kanji (Japanese) which has the
language code 59 and the map code "x".

To catalog such an object, you first set the correct language code (here 59) using the terminal é6lowmand
wherennis the language code

You then catalog the object using the ampersand (&) character instead of the actual map code in the object name.
So to have a Japanese version of the map DEMO, you stow the map under the name DEMO&.

If you now look at the list of Natural objects, you will see that the map is correctly listed as DEMOX.

Objects with language codes 1-9 and upper case A-Z can be cataloged directly without the use of the ampersand
(&) notation.

Copyright © Software AG 2002 137

Defining the User Language Screen Design

In the example list below, you can see the three maps DEMO1, DEMO2 and DEMOXx. To delete the map
DEMOX, you use the same method as when creating it, that is, you set the correct language with the terminal
command»L=59 and then confirm the deletion with the & notation (DEMO&).

08:41:14 wiikk NATURAL LIST COMMAND #k* 2001-01-25
User SAG LIST ** Library SAG

Cmd Name Type S/C SM Vers Level User-ID Date Time

COM3 Program S/C S 2.2 0002 SAG 92-01-21 14:34:39

__ CUR Program +--------- DELETE --------- + 92-01-22 09:37:02
_ CURS Map ! ! 92-01-22 09:37:41

D Program ! Please confirm deletion ! 92-01-21 14:13:14
_ DARL Program ! with name DEMOx ! 91-06-03 12:08:30
__ DARL1 Local ! DEMO&__ ! 91-06-03 12:03:52
__ DAV Program + + 92-01-29 09:07:52

de DEMOx Map S/IC S 2.2 0002 SAG 92-02-25 08:41:04
__ DEMOl1 Map S/IC S 2.2 0002 SAG 92-01-22 08:38:32
__ DEMO2 Map S/IC S 2.2 0002 SAG 92-01-22 08:07:32

DOWNCOM Program S S 2.2 0001 SAG 91-08-12 14:01:10
DOWNCOMR Program S S 2.2 0001 SAG 91-08-12 14:01:32
DOWNCOM2 Program S S 2.2 0001 SAG 91-08-15 13:02:20
__ DOWNDIR Program S S 2.2 0001 SAG 91-08-16 08:03:56

From (New start value) 0

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit - -+ Canc

Defining the User Language
You define the language to be used per user - as defined in the system variable *\LANGUAGE - with the profile

parametetJLANG (which is described in the Natural Parameter Reference documentation) or with the terminal
command¥lL=nn (wherennis the language code).

138 Copyright © Software AG 2002

Screen Design Referencing Multilingual Objects

Referencing Multilingual Objects

To reference multilingual objects in a program, you use the ampersand (&) character in the name of the object.

The program below uses the maps DEMO1 and DEMO2. The ampersand (&) character at the end of the map

name stands for the map code and indicates that the map with the current language as defined in the

*LANGUAGE system variable is to be used.

Example:

DEFINE DATA LOCAL
1 PERSONNEL VIEW OF EMPLOYEES
2 NAME (A20)
2 PERSONNEL-ID (A8)
1 CAR VIEW OF VEHICLES
2 REG-NUM (A15)
1 #CODE (N1)
END-DEFINE
*

INPUT USING MAP 'DEMO&’ /* <--- INVOKE MAP WITH CURRENT LANGUAGE CODE

When this program is run, the English map (DEMO1) is displayed. This is because the current value of

*LANGUAGE is "1" = English.

MAP DEMO1

SAMPLE MAP

Please select a function!

1.) Employee information

2.) Vehicle information

Enter code here: _

Copyright © Software AG 2002

139

Programs Screen Design

In the example below, the language code has been switched to "2" = German with the terminal Gbirw2and

When the program is now run, the German map (DEMO?2) is displayed.

BEISPIEL-MAP

Bitte wahlen Sie eine Funktion!

1.) Mitarbeiterdaten

2.) Fahrzeugdaten

Code hier eingeben: _

Programs

For some applications it may be useful to define multilingual programs. For example, a standard invoicing
program, might use different subprograms to handle various tax aspects, depending on the country where the
invoice is to be written.

Multilingual programs are defined with the same technique as described above for maps.

Error Messages

Using the Natural utility SYSERR, you can translate Natural error messages into up to 60 languages, and also
define your own error messages.

Which message language a user sees, depends on the *LANGUAGE system variable.

For further information on error messages, see the NGYISERR Utilitydocumentation.

Edit Masks for Date and Time Fields

The language used for date and time fields defined with edit masks also depends on the system variable
*LANGUAGE.

For details on edit masks, see the session paraEdtas described in the Natural Reference documentation.

140 Copyright © Software AG 2002

Screen Design Skill-Sensitive User Interfaces

Skill-Sensitive User Interfaces

Users with varying levels of skill may wish to have different maps (of varying detail) while using the same
application.

If your application is not for international use by users speaking different languages, you can use the techniques
for multilingual maps to define maps of varying detail.

For example, you could define language code 1 as corresponding to the skill of the beginner, and language code
2 as corresponding to the skill of the advanced user. This simple but effective technique is illustrated below.

The following map (PERS1) includes instructions for the end user on how to select a function from the menu.
The information is very detailed. The name of the map contains the map code 1:

MAP PERS1
SAMPLE MAP

Please select a function

1.) Employee information _
2.) Vehicle information _
Enter code: _
To select a function, do one of the following:
- place the cursor on the input field next to desired function and press ENTER
- mark the input field next to desired function with an X and press ENTER

- enter the desired function code (1 or 2) in the 'Enter code’ field and press
ENTER

Copyright © Software AG 2002 141

Skill-Sensitive User Interfaces Screen Design

The same map, but without the detailed instructions is saved under the same name, but with map code 2.

MAP PERS2

SAMPLE MAP

Please select a function

1.) Employee information _

2.) Vehicle information _

Enter code: _

In the example above, the map with the detailed instructions is output, if the ULANG profile parameter has the
value 1, the map without the instructions if the value is 2.

Further details oLANG are described in Profile Parameters in the Natural Parameter Reference
documentation.

142 Copyright © Software AG 2002

Dialog Design Dialog Design

Dialog Design

This section tells you how you can design user interfaces that make user interaction with the application simple
and flexible:

® Field-Sensitive Processing
*CURS-FIELD and POSield-namé

® Simplifying Programming
System Function POS

® Line-Sensitive Processing
System Variable *CURS-LINE

® Column-Sensitive Processing
System Variable *CURS-COL

® Processing Based on Function Keys
System Variable *PF-KEY

® Processing Based on Function-Key Names
System Variable *PF-NAME

® Processing Data Outside an Active Window
System Variable *COM

® Copying Data from a Screen
Terminal Commands %CS and %CC

e Statements REINPUT/REINPUT FULL

® Object-Oriented Processing
Natural Command Processor

Field-Sensitive Processing
*CURS-FIELD and POS(field-name

Using the system variable *CURS-FIELD together with the system functionfie¢fdS{am4, you can define
processing based on the field where the cursor is positioned at the time the user presses ENTER.

*CURS-FIELD contains the internal identification of the field where the cursor is currently positioned; it cannot
be used by itself, but only in conjunction with P@&¢-name.

You can use *CURS-FIELD and PQi®{d-namég, for example, to enable a user to select a function simply by
placing the cursor on a specific field and pressing ENTER.

The example below illustrates such an application:

Example:

DEFINE DATA LOCAL
1 #EMP (A1)

1 #CAR (A1)

1 #CODE (N1)
END-DEFINE

*

INPUT USING MAP 'CURS’
*
DECIDE FOR FIRST CONDITION
WHEN *CURS-FIELD = POS(#EMP) OR #EMP ="X' OR #CODE = 1
FETCH 'LISTEMP’
WHEN *CURS-FIELD = POS(#CAR) OR #CAR ="X' OR #CODE = 2

Copyright © Software AG 2002 143

*CURS-FIELD and POS(field-name) Dialog Design

FETCH 'LISTCAR’
WHEN NONE
REINPUT 'PLEASE MAKE A VALID SELECTION’
END-DECIDE

END

144 Copyright © Software AG 2002

Dialog Design *CURS-FIELD and POS(field-name)

SAMPLE MAP
Please select a function
1.) Employee information
2.) Vehicle information _ - Cursor positioned
on field
Enter code: _
To select a function, do one of the following:
- place the cursor on the input field next to desired function and press ENTER
- mark the input field next to desired function with an X and press ENTER

- enter the desired function code (1 or 2) in the 'Enter code’ field and press
ENTER

If the user places the cursor on the input field (#EMP) next to Employee information, and presses ENTER, the
program LISTEMP displays a list of employee names:

Page 1 2001-01-22 09:39:32

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD

Copyright © Software AG 2002 145

Simplifying Programming Dialog Design

Simplifying Programming
System Function POS

The system function POf&ld-namé contains the internal identification of the field whose name is specified
with the system function.

POS(ield-nam@ may be used to identify a specific field, regardless of its position in a map. This means that the
sequence and number of fields in a map may be changed, butdRIE{Me will still uniquely identify the

same field. With this, for example, you need only a single REINPUT statement to make the field to be MARKed
dependent on the program logic.

Note:
The values of *CURS-FIELD and PO{d-nam@ serve for internal identification of the fields only. They
cannot be used for arithmetical operations.

Example:

DECIDE ON FIRST VALUE OF ...
VALUE ...
COMPUTE #FIELDX = POS(FIELD1)
VALUE ...
COMPUTE #FIELDX = POS(FIELD2)

END-DECIDE

REINPUT ... MARK #FIELDX

Full details on*CURS-FIELD and POSield-namé are described in Natural System Functions in the Natural
Programming Reference documentation.

146 Copyright © Software AG 2002

Dialog Design Line-Sensitive Processing

Line-Sensitive Processing
System Variable *CURS-LINE

Using the system variable *CURS-LINE, you can make processing dependent on the line where the cursor is
positioned at the time the user presses ENTER.

Using this variable, you can make user-friendly menus. With the appropriate programming, the user merely has
to place the cursor on the line of the desired menu option and press ENTER to execute the option.

The cursor position is defined within the current active window, regardless of its physical placement on the
screen.

Note:
The message line, function-key lines and statistics line/infoline are not counted as data lines on the screen.

The example below demonstrates line-sensitive processing using the *CURS-LINE system variable. When the
user presses ENTER on the map, the program checks if the cursor is positioned on line 8 of the screen which
contains the option "Employee information”. If this is the case, the program that lists the names of employees

LISTEMP is executed.

Example:

DEFINE DATA LOCAL
1 #EMP (A1)

1 #CAR (A1)

1 #CODE (N1)
END-DEFINE

*

INPUT USING MAP 'CURS’
*
DECIDE FOR FIRST CONDITION
WHEN *CURS-LINE =8
FETCH 'LISTEMP’
WHEN NONE
REINPUT 'PLACE CURSOR ON LINE OF OPTION YOU WISH TO SELECT’
END-DECIDE
END

Company Information

Please select a function

[l 1.) Employee information

2.) Vehicle information

Place the cursor on the line of the option you wish to select and press
ENTER

Copyright © Software AG 2002 147

Column-Sensitive Processing Dialog Design

The user places the cursor indicated]bgn the line of the desired option and presses ENTER and the
corresponding program is executed.

Column-Sensitive Processing
System Variable *CURS-COL

The system variable *CURS-COL can be used in a similar way to *CURS-LINE described above. With
*CURS-COL you can make processing dependent on the column where the cursor is positioned on the screen.

148 Copyright © Software AG 2002

Dialog Design Processing Based on Function Keys

Processing Based on Function Keys
System Variable *PF-KEY

Frequently you may wish to make processing dependent on the function key a user presses.

This is achieved with the statement SET KEY, the system variable *PF-KEY and a modification of the default
map settings (Standard Keys = "Y").

The SET KEY statement assigns functions to function keys during program execution. The system variable
*PF-KEY contains the identification of the last function key the user pressed.

The example below illustrates the use of SET KEY in combination with *PF-KEY.

Example:

SET KEY PF1
*
INPUT USING MAP 'DEMO&’
IF *PF-KEY ="'PF1’
WRITE "Help is currently not active’
END-IF

The SET KEY statement activates PF1 as a function key.

The IF statement defines what action is to be taken when the user presses PF1. The system variable *PF-KEY is
checked for its current content; if it contains PF1, the corresponding action is taken.

Further details regarding the statem®8B{T KEY and the system variabteF-KEY are described in the Natural
Statements and the Natural Programming Reference documentation respectively.

Copyright © Software AG 2002 149

Processing Based on Function-Key Names Dialog Design

Processing Based on Function-Key Names
System Variable *PF-NAME

When defining processing based on function keys, further comfort can be added by using the system variable
*PF-NAME. With this variable you can make processing dependent on the hame of a function, not on a specific
key.

The variable *PF-NAME contains the name of the last function key the user pressed (that is, the name as
assigned to the key with the NAMED clause of the SET KEY statement).

For example, if you wish to allow users to invoke help by pressing either PF3 or PF12, you assign the same
name (in the example below: INFO) to both keys. When the user presses either one of the keys, the processing
defined in the IF statement is performed.

Example:

SET KEY PF3 NAMED 'INFO’
PF12 NAMED 'INFO’
INPUT USING MAP 'DEMO&’
IF *PF-NAME = "INFO’
WRITE ’Help is currently not active’
END-IF

The function names defined with NAMED appear in the function-key lines:

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
INFO INFO

150 Copyright © Software AG 2002

Dialog Design Processing Data Outside an Active Window

Processing Data Outside an Active Window

Below is information on:

® System Variable *COM
e Example Usage of *COM
® Positioning the Cursor to *COM - %T* Terminal Command

System Variable *COM

As stated above, onlgne window is active at any one time. This normally means that input is only possible
within that particular window.

Using the *COM system variable, which can be regarded as a communication area, it is possible to enter data
outside the current window.

The prerequisite is that a map contains *COM as a modifiable field. This field is then available for the user to
enter data when a window is currently on the screen. Further processing can then be made dependent on the
content of *COM.

This allows you to implement user interfaces as already used, for example, by Con-nect, Software AG’s office
system, where a user can always enter data in the command line, even when a window with its own input fields
is active.

Note that *COM is only cleared when the Natural session is ended.

Example Usage of *COM

In the example below, the program ADD performs a simple addition using the input data from a map. In this
map, *COM has been defined as a modifiable field (at the bottom of the map) with the length specified in the AL
field of the Extended Field Editing . The result of the calculation is displayed in a window. Although this

window offers no possibility for input, the user can still use the *COM field in the map outside the window.

Program ADD:

DEFINE DATA LOCAL
1 #VALUE1 (N4)
1 #VALUE2 (N4)
1 #SUM3 (N8)
END-DEFINE
*
DEFINE WINDOW EMP
SIZE 8*17
BASE 10/2
TITLE 'Total of Add’
CONTROL SCREEN
FRAMED POSITION SYMBOL BOT LEFT

*

INPUT USING MAP "WINDOW

*

COMPUTE #SUMS3 = #VALUE1 + #VALUE2
*
SET WINDOW 'EMP’
INPUT (AD=0) /'Value 1 +'/
Value 2 =" //
T #SUMS3

Copyright © Software AG 2002 151

Positioning the Cursor to *COM - %T* Terminal Command Dialog Design

IF*COM ="M’
FETCH 'MULTIPLY’ #VALUE1 #VALUE2
END-IF
END

Map to Demonstrate Windows with *COM
CALCULATOR

Enter values you wish to calculate

Value 1. 12
Value 2: 12
+-Total of Add-+
! !
I'Valuel+ !
I'Value2= !

Next line is input field (*COM) for input outside the window:

In this example, by entering the value "M", the user initiates a multiplication function; the two values from the
input map are multiplied and the result is displayed in a second window:

Map to Demonstrate Windows with *COM
CALCULATOR

Enter values you wish to calculate

Value 1. 12

Value 2: 12
+-Total of Add-+ e +
! ! ! !
I'Valuel+ ! I'Valuelx !
I'Value2= ! I'Value2= !
! ! ! !
! 24 | ! 144 |
1 I I]
S + O +

Next line is input field (*COM) for input outside the window:

Positioning the Cursor to *COM - %T* Terminal Command

Normally, when a window is active and the window contains no input fields (AD=M or AD=A), the cursor is
placed in the top left corner of the window.

152 Copyright © Software AG 2002

Dialog Design Positioning the Cursor to *COM - %T* Terminal Command

With the terminal comman®T*, you can position the cursor to a *COM system variable outside the window
when the active window contains no input fields.

By using %T* again, you can switch back to standard cursor placement.

Example:

INPUT USING MAP "WINDOW’

*

COMPUTE #SUM3 = #VALUE1 + #VALUE2
*

SET CONTROL 'T*

SET WINDOW "EMP’

INPUT (AD=0) / 'Value 1 +'/
'Value 2 =" //
" #SUM3

Copyright © Software AG 2002 153

Copying Data from a Screen Dialog Design

Copying Data from a Screen

Below is information on:

® Terminal Commands %CS and %CC
® Selecting a Line from Report Output for further Processing

Terminal Commands %CS and %CC

With these terminal commands, you can copy parts of a screen into the Naturée@&thi(into the system
variable *COM @6CQ). The protected data from a specific screen line are copied field by field.

The full options of thesterminal commandare described in the Natural Programming Reference
documentation.

Once copied to the stack or *COM, the data are available for further processing. Using these commands, you can
make user-friendly interfaces as in the example below.

Selecting a Line from Report Output for further Processing
In the following example, the program COML1 lists all employee names from Abellan to Alestia.
Program COM1:

DEFINE DATA LOCAL

1 EMP VIEW OF EMPLOYEES
2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)

END-DEFINE

*

READ EMP BY NAME STARTING FROM 'ABELLAN’ THRU 'ALESTIA’
DISPLAY NAME

END-READ

FETCH 'COM2’

END

154 Copyright © Software AG 2002

Dialog Design Selecting a Line from Report Output for further Processing

Page 1 2001-01-22 08:21:22

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA
MORE

Control is now passed to the program COM2.
Program COM2:

DEFINE DATA LOCAL
1 EMP VIEW OF EMPLOYEES
2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)
1 SELECTNAME (A20)
END-DEFINE

*

SET KEY PF5 ="%CCC’

*

INPUT NO ERASE 'SELECT FIELD WITH CURSOR AND PRESS PF¥%’

* MOVE *COM TO SELECTNAME

FIND EMP WITH NAME = SELECTNAME
DISPLAY NAME PERSONNEL-ID

END-FIND

END

In this program, the terminal comma¥CCCis assigned to PF5. The terminal command copies all protected
data from the line where the cursor is positioned to the system variable *COM. This information is then available
for further processing. This further processing is defined in the program lines shiogldfate

The user can now position the cursor on the name that interests him; when he/she now presses PF5, further
employee information is supplied.

Copyright © Software AG 2002 155

Statements REINPUT/REINPUT FULL Dialog Design

SELECT FIELD WITH CURSOR AND PRESS PF5 2001-01-22 08:20:22

ABELLAN
ACHIESON
ADAM <+ Cursor positioned on name for which more information is required
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA

In this case, the personnel ID of the selected employee is displayed:

Page 1 2001-01-22 08:20:30

NAME PERSONNEL
ID

ADAM 50005800

Statements REINPUT/REINPUT FULL

If you wish to return to and re-execute an INPUT statement, you use the REINPUT statement. It is generally
used to display a message indicating that the data input as a result of the previous INPUT statement were invalid.

If you specify the FULL option in a REINPUT statement, the corresponding INPUT statement will be
re-executed fully:

e With an ordinary REINPUT statement (without FULL option), the contents of variables that were changed
between the INPUT and REINPUT statement will not be displayed; that is, all variables on the screen will
show then contents they had when the INPUT statement was originally executed.

e With a REINPUT FULL statement, all changes that have been made after the initial execution of the
INPUT statement will be applied to the INPUT statement when it is re-executed; that is, all variables on the
screen contain the values they had when the REINPUT statement was executed.

e |If you wish to position the cursor to a specified field, you can use the MARK option, and to position to a
particular position within a specified field, you use the MARK POSITION option.

The example below illustrates the use of REINPUT FULL with MARK POSITION.

156 Copyright © Software AG 2002

Dialog Design

Statements REINPUT/REINPUT FULL

Example:

DEFINE DATA LOCAL
1 #A (A10)
1 #B (N4)
1 #C (N4)
END-DEFINE
*
INPUT (AD=M) #A #B #C
IF#A=""
COMPUTE #B = #B + #C
RESET #C
REINPUT FULL ’Enter a value’ MARK POSITION 5 IN *#A
END-IF
END

Copyright © Software AG 2002

157

Statements REINPUT/REINPUT FULL Dialog Design

The user enters 3 in field #B and 3 in field #C and presses ENTER.

#A #B 3 #C 3

The program requires field #A to be non-blank. The REINPUT FULL statement with MARK POSITION 5 IN
*#A returns the input screen; the now modified variable #B contains the value 6 (after the COMPUTE
calculation has been performed). The cursor is positioned to the 5th position in field #A ready for new input.

Enter name of field
#A _ #B 6#C O

Cursor positioned to 5th position in field

Enter a value

This is the screen that would be returned by the same statement, without the FULL option. Note that the
variables #B and #C have been reset to their status at the time of execution of the INPUT statement (each field
contains the value 3).

#A #B 3#C 3

158 Copyright © Software AG 2002

Dialog Design Object-Oriented Processing

Object-Oriented Processing

Natural Command Processor

The Natural Command Processor is used to define and control navigation within an application.
The Natural Command Processor consists of two parts: a development part and a runtime part.

® The development part is the utility SYSNCP. With this utility, you define commands and the actions to be
performed in response to the execution of these commands. From your definitions, SYSNCP generates
decision tables which determine what happens when a user enters a command.

® The run-time part is the statement PROCESS COMMAND. This statement is used to invoke the Command
Processor within a Natural program. In the statement you specify the name of the SYSNCP table to be used
to handle the data input by a user at that point.

For further information regarding the Natural Command Processor, see the SABNCP Utility
documentation and the statemBROCESS COMMANDas described in the Natural Statements documentation.

Copyright © Software AG 2002 159

Editors - General Information Editors - General Information

Editors - General Information

This section gives an overview of which Natural objects are edited with which Natural editor. In addition, it
contains information on Natural object names, split-screen mode and the editor profile.

You invoke a Natural editor with the system commB&idT as described in the Natural Command Reference
documentation.

Which editor is invoked depends on the type of object you wish to edit:

® Programs, subprograms, subroutines, helproutines, copycode and text are created and editedjiarthe
editor.
® Global data areas, local data areas and parameter data areas are created and editta amagheeditor
Maps and help maps are created and edited im#peeditor
® Predict descriptions are edited in the Predict description editor
(see the Predict documentation).

An online help system is provided with each editor.

Tutorials which introduce you to the main features of the editors are providedTutdeal - Getting Started
with NaturalandTutorial - Using the Map Editor

In addition to the Natural editors, the Software AG Editor is provided as an optional feature, which is exclusively
used by several Natural subproducts and other Software AG products (for further information, see the relevant
section in theNatural Installation Guide for Mainframesid theSoftware AG Editodocumentation).

Note:
If you wish to use the Software AG Editor as an alternative to the Natural program editor, Natural ISPF

must be installed.
This section covers the following topics:

® Object Names
® Split-Screen Mode
e Editor Profile

160 Copyright © Software AG 2002

Editors - General Information Object Names

Object Names

The name of a Natural object can be 1 to 8 characters long. It can consist of the following characters:

Character | Explanation

A-Z upper-case alphabetical characters

0-9 numeric characters

- hyphen

underline

slash

dollar sign

Ro | & |

ampersand
(only as language code character;
see also the secti@efining the Language of a Natural Objgct

H*

hash/number sign

+ plus sign (only allowed as first character)

The first character of the name must be one of the following:

® an upper-case alphabetical character
o #
e +

If the first character is a hash/number (#) sign or a plus (+) sign, the name must consist of at least one additional
character.

Copyright © Software AG 2002 161

Split-Screen Mode Editors - General Information

Split-Screen Mode

You can use all three Natural editors in split-screen mode: you can use one half of the screen for editing an
object and at the same time have another Natural object displayed in the other half. Split-screen mode can be
used to display a view, a data area, a Predict program description or a Natural program in the lower half of the
screen. In addition, you can include items shown in the display section of the screen into the editing section that
is, into the object you are currently editing.

Example:

The following figure shows the program editor in split-screen mode with the source code of a program in the
editing section (upper half) and a local data area in the display section (lower half):

> >+ Program SAGDEMO Lib SAGTEST

Top ..+..l..+. 2. . +.3. +. 4. .+. 5. . +.6..+.7

0010 DEFINE DATA LOCAL USING L-INVOIC

0020 LOCAL USING L-INV-LN

0030 END-DEFINE

0040 *

0050 READ INVOICE-VIEW BY INVOICE-NO FROM 1

0060 *

0070 FIND INVOICE-LINE-VIEW WITH INVOICE-NO = INVOICE-NO (0050)

0080 DELETE

0090 END-FINE

0100 *

et o+l 204030+ 4.+..5..4..816 L1

Split All Local L-INVOIC Library SAGTEST

0010 V 1 INVOICE-VIEW INVOICE

0020 2 CUST-NO N 8

0030 2 INVOICE-NO N 8

0040 2 DATE A 8

0050 2 AMOUNT N 9.2

0000

0000

0000

0000

Split-Screen Commands
The following commands can be used to display and position an object in split-screen mode. All commands

begin with arS or with SPLIT to indicate the working mode - Split Screen. The SPLIT command is a
cursor-sensitive commaras$ described in the section Program Editor.

162 Copyright © Software AG 2002

Editors - General Information

Split-Screen Commands

Command Function

S ++ Position to bottom of object.

SB

S-- Position to top of object.

ST

S+ Position one page forwards.

S +P

S - Position one page backwards.

S-P

S Hnn Positionnnnlines forwards (only valid for program editor).
S finn Positionnnnlines backwards (only valid for program editor).
S. Terminate split-screen mode.

SEND

SDATA name]library]

Display data area (global, local, parameter).

S DESCRIPTIONpgm-namélibrary]

Display program description (if available) from the Predict Data
Dictionary (valid for program and data area editor only).

S FUNCTION name[library]

Display the subroutineame wherenameis the name of the subrouti
as used in the DEFINE SUBROUTINE statement (not the name o
object containing the subroutine).

This command is only available in the program editor.

e
f the

SPROGRAMname]library]

Display program, subprogram, subroutine, helproutine, copycode,
map, class.

text,

S SCAN [valug

Scan for avalue Each line containing the value is marked with a
greater than (>) sign. To further scan for the same value, 218€r
only.

SVIEW name[SHORT)]

Display view (DDM, as defined in Predict or SYSDDM). If SHORT]
specified, the DDM is listed in short form (that is, only the Adabas
short names and corresponding Natural field names are displayed
without any field header or field edit mask information.

is

~

In the data area editor, with DATA, PROGRAM and VIEW, an asterisk (*) can be useghfi@to display a list
of all available objects. If the asterisk (*) is preceded by one or more characters, only those objects whose names
begin with these characters are displayed.

A library can be specified with the program editor only. Under Natural Security, a library cannot be specified.

Copyright © Software AG 2002

163

Editor Profile Editors - General Information

Editor Profile

This section covers the following topics:

General Information
Additional Options
Editor Defaults

General Defaults

Color Definitions

Direct Commands

User Exit USR0070P
Exit Profile Maintenance

General Information
When working with the Natural program editor or data area editor, an editor profile can be defined per user.

The editor profile shows the functions assigned to the PF and PA keys, and various other settings to be in effect
during the edit session.

The profile can be modified by the users to suit their personal editing requirements.

To display your current profile, enter the command PROFILE in the command line of your program or data area
editor. If such a profile does not exist, the default profile SYSTEM is displayed which can be used to create a
user’s profile. The SYSTEM prdfile is read from theer exit USR0070Bnd can be modified there.

To display the profile of another user or the default profile SYSTEM, enter the command PROFILE
profile-name whereprofile-namecorresponds to the respective user ID.

When you are in an edit session and enter the PROFILE command together with your own user ID as profile
name, your profile is always invoked directly from the database; any modifications made during the current
session, but not yet saved on the database, will not apply. Therefore, to invoke your current session profile, enter
the PROFILE command only.

164 Copyright © Software AG 2002

Editors - General Information General Information

When you enter the PROFILE command, the following screen is displayed:

10:36:42 *xxk%* NATURAL EDITORS ***** 2001-01-30
- Editor Profile -

Profile Name .. SAG

PF and PA Keys

PF1 ... -- PF2..-H PF3 ... -

PF4 ... ++ PF5 ... +H PF6 ... +

PF7 ... SCAN PF8 ... PF9 ...

PF10 .. SC= PF11 .. *CURSOR PF12 .. CANCEL
PF13 .. PF14 .. PF15 ..

PF16 .. PF17 .. PF18 ..

PF19 .. PF20 .. PF21 ..

PF22 .. PF23 .. PF24 ..

PAL ... PA2 ... PAS ...

Automatic Functions
Auto Renumber .. Y Auto Save Numbers .. 10 Source Save into .. EDITWORK

Additional Options .. N
Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit AddOp Save Flip Del Canc

Attention:
Profile modifications made during the current session are lost when you enter the system command LOGON.

Copyright © Software AG 2002 165

Additional Options

Editors - General Information

Entry

Explanation

Profile Name

The name of the editor profile. Your own editor profile is displayed. If such a profilg
not exist, you can modify the default profile to suit your own requirements. To do s
overtype the profile name SYSTEM with your user ID and save the renamed profilg
the database.

If you overtype the name of your profile with any other valid profile name (that is, a
other valid user ID) and press ENTER, the profile of the corresponding user is invg
Only one profile can be established per user ID, and any modifications made to an
user’s profile are only valid for the current session; they cannot be saved on the da

You can, however, overtype the profile name of another user’s profile with your ow
ID and then save the renamed profile on the database.

does

e 0N

ny

ked.
pther
tabase.

N user

PF and PA Keys

The commands assigned to the PF and PA keys are displayed. Any Natural editor
system command can be assigned. Combinations of commands (separated by a ¢
are also possible.

or
pmma)

Auto Renumber

Y indicates that the source code in the program editor is to be renumbered automg
if any of the following occurs:

® a CATALOG, CHECK, RUN, SAVE or STOW command is issued;
® a.l line command is issued and no line number is available for the line to be
inserted.

Note:
See als&Renumbering of Source-Code Line Number References

tically

Auto Save Number

If a numeric value is entered, a copy of the source is saved automatically into the
specified in the "Source Save into" field after the specified number of modificationg
taken place. Modification means each time that the source has been changed as 3
information entered on the screen.

Auto Save Numbers applies to the map editor, too.

hember
have
result of

Source Save into

The name of the member into which a copy of the source is to be saved automatic
default name EDITWORK can be modified. The specified member is overwritten e
time the number of changes specified in the "Auto Save Numbers" field has been
exceeded.

plly; the
ach

Additional Options

If you mark Additional Options on the Editor Profile screen withr press PF4, a window will be displayed
from which you can select the following options:

o Editor Defaults

® General Defaults
® Color Definitions

A plus (+) sign in front of an option indicates that some values have already been set in the corresponding
window or via an appropriate editor command.

To select an option,

you mark it withva

For each option selected, a corresponding window will be displayed. The individual items of each window are

explained below.

166

Copyright © Software AG 2002

Editors - General Information Editor Defaults

Editor Defaults

Option Explanation

Escape Character fo The escape character which must precede each line command; the default escape
Line Command character is a period (.).

Empty Line

! Y Any lines left blank are eliminated from the source as soon as you press ENTER.
Suppression

N Any lines left blank ar@ot eliminated from the source when you press ENTHR.

This parameter only applies to the line commar{dee the sectiorfRrogram Editor
andData Area Editor

Source Size

- Y The actual size of the object being edited and the remaining space availablg is
Information

displayed in the bottom information line of the editor screen. In addition, in the
program editor, the programming mode (reporting or structured) is displayefl in
the top information line of the editor screen.

N No such information is displayed.

Source Status

Y A transaction message will be displayed in the top information line each time the
Message

source is modified, checked, saved, cataloged or stowed.

N No such transaction message will be displayed.

The Source Status Message parameter only applies to the program editor.

Absolute Mode for | v corresponds to the editor command SET ABS ON.
SCAN/CHANGE

N Corresponds to the editor command SET ABS OFF.

See Editor Commands in the secti®megram EditoandData Area Editar

Range Mode for Y Corresponds to the editor command SET RANGE ON.
SCAN/CHANGE

N Corresponds to the editor command SET RANGE OFF.

SeeEditor Command#n the section Program Editor.

Direction Indicator | Indicates the directiont(or -) in which several editor commands are to work (see @lso
Editor Command Line in the sectioRsogram EditoandData Area Editor

Copyright © Software AG 2002 167

General Defaults

General Defaults

Editors - General Information

Parameter

Explanation

Editing in Lower
Case

Y

N

Lower-case characters in the source codmarautomatically converted to upper|
case (corresponds to the terminal commnzhd.

Lower-case characters in the source code are automatically converted to uppé¢r case
(corresponds to the terminal comma&at)). Automatic conversion is in effect by
default.

per
se

Message Line

Dynamic This option is relevant only if the above option is set to
Conversion of
Lower Case Y All lower-case characters in the source code are automatically converted to u
case - except text strings that are enclosed in apostrophes and comments: th
remain as you enter them (see also the seBtiogram Editor.
N Any source code remains as you enter it.
Position of Indicates the position of the message line; possible valug<&eBOT, nn and-nn.

Cursor Position in

See Editor Commands in the secti®iiegram EditoandData Area Editar

X Y Indicates that the cursor is positioned in the edit command line after the source has
Command Line been modified and you pressed ENTER.
gtay onCurrent | v Corresponds to the editor command SET STAY ON.
creen
N Corresponds to the editor command SET STAY OFF.

Prompt Window
for Exit Function

Y

=

When you enter the EXIT command in the editor command line, a confirmatio
window is displayed (see also Exit Function in the secfivngram Editoand
Data Area Editor

ISPF Editor as
Program Editor

Y Natural ISPF (if installed) is invoked instead of the Natural program editor.

168

Copyright © Software AG 2002

Editors - General Information Color Definitions

Color Definitions

If you mark Color Definitions witly in the Additional Options window, the following window will be
displayed:

+ COLOUR DEFINITIONS +
] I
I Edit Work Area Split Screen Area !
I Command Line NE !
Label Indicator NE Label Indicator NE !
Line Numbers NE Line Numbers NE !
Editor Lines NE Editor Lines NE !

Information Text NE Information Text ... NE !
Information Value ... NE Information Value .. NE !
Information Line NE !

+ +
T T

!
!
!
I Scan and Error Line.. NE Scan Line NE !
!
]
!

In this window you can specify the colors in which the various parts of the edit-work and split-screen area of
your program or data area editor are to be displayed.

To get a list of the colors available, you enter the question mark (?) help character in any of the input fields of the
Color Definitions window or press PF1 (Help).

Apart from the Command and Information Lines and the corresponding Information Text and Values, the
following individual parts can be assigned a specific color:

Label Indicator Leftmost column of the editor screen; used, for example, to label a source code ling on
which a certain command has been performed (for exampleX tned.Y line
commands).

Line Numbers Column of the source code line numbers (program editor only).

Editor Lines Lines of source code currently in the edit-work and/or split-screen area.

Scan and Error Lin| All lines marked with arg (or a greater than (>) sign in split-screen mode) as a resuft of a
scan operation, any line where an error was detected (markeH ittt applicable in
edit-work area of program editor only) and the error message line itself.

Copyright © Software AG 2002 169

Direct Commands Editors - General Information

Direct Commands

The following direct commands can be used instead of the corresponding PF keys. Direct commands have to be
entered in the command line at the bottom of the editor profile screen.

Command| Description

CANCEL | This command (or PF12) cancels the current function and returns you to the screen from which it
was invoked. Any modifications made to the profile have no effect for the current session.

DELETE |This command (or PF11) deletes the current profile from the database. Before the profile is
deleted, however, a confirmation window pops up, in which you can either type the name df the
profile and press ENTER to confirm the deletion of the profile, or press ENTER only to exit|the

function.

A

EXIT This command (or PF3) invokes the exit function prompt window, regardless of whether thg
corresponding editatefault parametegisee General Defaults) is set or not.

FLIP This command (or PF6 and PF18) is used to switch between the two PF-key lines.

REFRESH,| This command (or PF13) displays the profile parameters currently valid for the session, which
means that any modifications made so far, but not yet saved, are overwritten.

SAVE This command (or PF5) saves all currently valid profile parameters both for the current segsion
and on the database. However, it doesleave the current function.

170 Copyright © Software AG 2002

Editors - General Information User Exit USR0070P

User Exit USRO070P

The user exit routine USR0070P enables you to modify the parameter settings in the default profile SYSTEM.
USRO0O070P provides a list of all parameters which are to receive a default setting.

With this user exit, you can also determine whether editor profiles are to be stored in the FNAT system file, the
FUSER system file or the scratch-pad file.

Exit Profile Maintenance

To exit from any editor profile maintenance function, press PF3 (Exit) or enter the EXIT command in the
command line at the bottom of your terminal screen. In both cases the EXIT Function prompt window is invoked
offering you the following options:

Function Explanation

Save and Exit Returns you to the screen from where the current profile maintenance function wag
invoked and saves any modifications made to the current profile. Modifications are|saved
both for the current session and on the database.
If you are working with another user’s editor profile, however, modifications made tp that
profile cannot be saved on the database. They are valid for the current session only; a

corresponding message is returned.

Exit without Saving Returns you to the screen from where the current profile maintenance function was
invoked. Any modifications made to the current profile are only valid for the current
session; they anmgot saved on the database.

Pressing ENTER corresponds to "Exit without Saving".

Resume Function | Closes the prompt window and returns you to the current profile maintenance func]ion.

Copyright © Software AG 2002 171

Program Editor Program Editor

Program Editor

The Natural program editor is used to perform online full-screen editing of Natural source programs. With the
program editor, you can create and edit source programs quickly and efficiently with a minimum of effort. This
section describes how to use this editor:

Invoking the Program Editor
Top Information Line

Bottom Information Line
Editor Command Line
Editing a Program

Editor Commands

Editor Commands for Positioning
Line Commands

Special PF-Key Functions
Cursor-Sensitive Commands
The Exit Function

Invoking the Program Editor

You invoke the program editor with the system commabdil as described in the Natural Command Reference
documentation.

When you invoke the program editor, the editor screen is displayed (as shown below with a program in the work
area):

> >+ Program SAGDEMO Lib SAGTEST
All L+l 200+ 80+ 4L+ LUSL . Mode Structured.

0010 DEFINE DATA LOCAL USING L-INVOIC

0020 LOCAL USING L-INV-LN

0030 END-DEFINE

0040 *

0050 READ INVOICE-VIEW BY INVOICE-NO FROM 1

0060 *

0070 FIND INVOICE-LINE-VIEW WITH INVOICE-NO = INVOICE-NO (0050)

0080 DELETE

0090 END-FIND

0100 *

0110 DELETE

0120 END TRANSACTION

0130 END-READ

0140 *

0150 FETCH 'MENU’

0160 END

0170

0180

0190

0200

....+....Current Source Size: 308 Char. Free: 44756 +..S16 L1

Note:

If Natural ISPF is installed and the general editor profile default "ISPF Editor as Program Editor" is set to "Y",
instead of the program editor, either the Natural ISPF main menu (if the EDIT command is entered without an
object name) or the Natural ISPF editor screen with the specified object is invoked.

172 Copyright © Software AG 2002

Program Editor Top Information Line

Top Information Line

The top information line of the editor screen is used to display a message indicating object modification. See also
the sectiorBource Status Messada addition, the programming mode (structured or reporting) currently in

effect is displayed. When a program is read into the edit area, the mode is set to the one which was in effect
when the program was stowed. This information is only displayed if the "Source Size Information" parameter in
the editor profile defaults is set to "Y".

Bottom Information Line

In the bottom information line of the editor screen, the following items of information are displayed:

Current Source SiZ Size (number of characters) of the current object. As source lines are stored in varfable
length in the work area, trailing blanks within a source line are not counted; leading and
embedded blanks are counted. This information is only displayed if the "Source Size
Information" parameter in the editor profile defaults is set to "Y".

Char. Free The number of characters still available in the work area. This information is only
displayed if the "Source Size Information" parameter in the profile defaults is set to"Y".

S Size (number of lines) of the object being edited.

The number of the source line currently displayed as the top line.

Editor Command Line
The top line of the program editor screen is the edit command line. In this line, you can enter:

® a Natural system command (for example, EDIT, CHECK, SAVE),
® one or moreaditor commands
e the name of a Natural program to be executed.

Additionally, the following items of information are displayed:

Direction Indicator (+ or -| The direction indicator can be set to control the direction of the editor comm:}mds
ADD and SCAN and of the line commands ".C", ".I" and ".M". The value "+"
indicatesafter and the value "-" indicatdsefore. The exact interpretation is
described with the relevant command description.

Object Type The type of object currently in the work area. The object type can be changed by
using the editor command SET TYPE.

Object Name The name of the object currently in the work area.

Library (Lib) The library to which you are currently logged on.

Editing a Program

Multiple Functions

Multiple functions can be performed from a single input screen:

Copyright © Software AG 2002 173

Dynamic Conversion from Lower to Upper Case Program Editor

® Source lines can be updated directly.
® One or mordine commandgan be used.
® One or moreeditor commandsan be used.

The following restrictions related to multiple functions apply:

® Only one insert line command (.I) can be performed at a time.

® You can enter multiple commands in the command line of the editor: you can enter more than one editor
command, but only the last command entered in the editor command line can be a Natural system
command. For example:
SC 'MOVE’,-2,RENUMBER.

e If you have changed the screen contents manually or by commands, a system command cannot be entered
until you press ENTER.

Note:
Natural treats the editor command "N" like a system command.

Dynamic Conversion from Lower to Upper Case

When the Natural terminal comma#®el. is set and dynamic conversion to upper case is specified, all source
code you enter in the editor is automatically converted to upper case, with the following exceptions:

® Text strings that are not hexadecimal constants and are enclosed in apostrophes remain as you enter them.
® Text strings (with or without apostrophes) in objects of type Text remain as you enter them.
e Comments remain as you enter them.

Dynamic conversion from lower to upper case can be specified and deactivateeditahprofile

174 Copyright © Software AG 2002

Program Editor Editor Commands

Editor Commands

Editor commands are entered in the command line of the program editor. The command parameters must be
separated either by the input delimiter character as defined with the Natural session parameter ID (the default

delimiter character is comma ",") or by a blank. When multiple commands are entered, these must also be
separated by the delimiter character or by blanks. Line commands must not be entered in the command line.

The following edit commands are available:

Editor Command Function

ADDI[(n)] This command addsblank lines. If the direction indicator is set to "+", the lines pre
added after the last line of the object being edited; if the direction indicator is sgt to
"-" the lines are added before the first line of the object.

1=A

The value fomn can be in the range from 1 to 9nifs not (or not correctly) specifie
9 lines (4 in split-screen mode) are added by default.
With the next ENTER, lines that are still left blank will be eliminated.

CANCEL With this command you leave the editor. Any modifications made since the las} time
the SAVE command was entered aot saved.

HANGE This command scans for the value enterescas-valueand replaces each such
value found with the value enteredraplace-valueThe syntax for this command is:

CHANGE ’scan-valuéreplace-valué

Any special character which is not valid within a Natural variable name can be|used
as the delimiter character.

CLEAR This command clears the edit area (including the line markers "X" and "Y").

DX, DY, DX-Y This command deletes the X-marked line; or the Y-marked line; or the block of|lines
delimited by "X" and "Y". See also the line commafd€' and ".Y".

EX, EY, EX-Y This command deletes source lines from the top of the source area to, but not
including, the X-marked line; or from the source line following the Y-marked ling to
the bottom of the source area; or all source lines in the source area excluding the
block delimited by "X" and "Y". See also the line commaha$ and ".Y".

EXIT With this command yoleave the editor

LET This command undoes all modifications made to the current screen since the lpst time
ENTER was pressed. In addition, LET ignores all line commands already entefed but
not yet executed.

N [(n)] This command renumbers the source code lines of the program currently in the work
area.

P

If you only enter "N", the lines are numbered in increments of 10; if you enter "
(n)", the lines are renumbered in increments.of

If the value specified fom" is too big, lines are numbered in increments of 5.

Note:

See alsdRenumbering of Source-Code Line Number References
PROFILE hamé This command displays the currewitor profile
QUIT Same agditor command CANCEL

Copyright © Software AG 2002 175

Editor Commands

Program Editor

Editor Command Function
REN ON|OFF ON Renumbers a Natural source program whenever it is checked, run, saved,
stowed or cataloged.
OFF Indicates that automatic renumbering is not in effect.
The default is ON (see also the sectiatitor Profile.
Note:
See alsdRenumbering of Source-Code Line Number References
RESET This command deletes the current X and Y line markers and any marker previgusly

set with the line command ".N". See also line commantisand ".Y".

SCAN ['scan-valug

This command scans for data in the source area. If you enter SCAN without any
parameter, the SCAN menu is invoked. If you enter SC#ddn-valug a scan for
scan-valuas performed.

If the supplied scan value is entered without delimiter characters, for example,
"SCAN ABC D", the entire character string which follows the keyword SCAN is
used as the scan value.

SCAN is acursor-sensitive command

(%]

CAN = [+]]

This command scans for the next occurrence of the scan value. The direction ¢f the
scan operation is determined by the setting of the direction indicator.

If the direction indicator is omitted or set to "+", the scan operation will be from|the
current position of the source area (top of the displayed source window) to the|last
line in the source area. If the direction indicator is set to "-", the scan operation|will
be backwards from the bottom line of the current screen to the first line in the Jource
area. The direction for a given scan command can also be explicitly specified By
entering "SCAN =+" or "SCAN =-" prior to command execution.

The first line which contains the scanned value is positioned to the top line aftgr each
SCAN command.

Each line in which the scanned value is located is marked with an "S" to the left of
the line.

Note:

The equal sign "=" used with the SCAN command is the default input assign
character. If another character has been specified as input assign character (spe
session parameték as described in the Natural Parameter Reference
documentation), that other character must be used instead.

SETABS [ON|OFF]

ON The SCAN and CHANGE commands operate in absolute mode, which
means that the value to be scanned/changed need not be delimited by lanks
or special characters.

OFF The SCAN and CHANGE commands do not operate in absolute mode,
which means that the value to be scanned/changed must be delimited bly
blanks or special characters.

The default is OFF.

SETESCAPEcharacter

The escape character which must precede each line commardefabk escape

characteis ".".

176

Copyright © Software AG 2002

Program Editor

Editor Commands

Editor Command

Function

SETNUL [ON|OFF]

ON All occurrences of a value scanned with the SCAN command are delete
After the deletion of the scanned value, the SET NUL command is
automatically set to OFF.

The default is OFF.

SETRANGE [ON|OFF]

ON The SCAN and CHANGE commands operate in range mode, which me
that the value to be scanned/changed must be located within the range
lines delimited by the X and Y line markers.

OFF The SCAN and CHANGE commands operate in hon-range mode, which
means that no range limit is to be in effect.

The default is OFF.

NS
Df

SET SEQ [ON|OFF]

OFF If your input is numeric, the first four positions in the edit area are

considered as the line number and are moved to the line number positipn

once you press ENTER.

This feature is useful, for example, if a statement line is to be reference
a source code line number in another statement line; when you renumb
source code, the referencing line number is renumbered, too.

ON Numeric input in the first four positions remains as entered.

Except with object type Text, the default is OFF.

d by
er the

SETSIZE [ON|OFF]

ON The program size is displayed at the bottom information line of the editg
screen and the programming mode is displayed on the scale line.

OFF This information is not displayed.

The default is OFF

SET STAY [ON|OFF]

ON The current screen will stay when ENTER is pressed. Forward and bac
positioning can be done by positioning commands only.

OFF Pressing ENTER positions to the next screen.

ward

SET TYPE

The object type is set automatically when an existing object is read into the wo
area.

This command can be used to change the type of object to be edited:

SET TYPE PROGRAM (Natural Program)

SET TYPE SUBROUTINE (Natural Subroutine)
SET TYPE SUBPROGRAM (Natural Subprogram)
SET TYPE HELPROUTINE (Natural Help Routine)
SET TYPE COPYCODE (Natural Copycode)

SET TYPE TEXT (Natural Text)

SET TYPE CLASS (Natural Class)

SHIFT [-]+nn]

This command shifts each source line delimited by the X and Y markers to the
right. Thenn parameter represents the number of characters the source line is
shifted. Comment lines are not shifted.

left or
o be

This command shifts each source line delimited by the X and Y markers to the
leftmost position. Comment lines are not shifted.

Copyright © Software AG 2002 177

Editor Commands for Positioning Program Editor

Editor Command

Function

SHIFT ++

This command shifts each source line delimited by the X and Y markers to the
rightmost position (maximum 99 positions). Comment lines are not shifted.

STRUCT [DISPLAY]

This command performs structural indentation of a Natural source program.

If DISPLAY is specified, the Natural source program is displayed in compresss
form (see also the system comm&WRUCTIin the Natural Command Reference
documentation).

This command displays the editor command most recently entered.

This command again executes the command most recently entered in the com
line.

With this command you leave the editor. Any modifications made since the las
the SAVE command was entered aot saved.

See alsdRenumbering of Source-Code Line Number Referemcése Natural Reference Documentation.

Editor Commands for Positioning

Editor commands for positioning are entered in the command line of the program editor. The following
commands are available for positioning:

Command| Function

+P Position forwards one page.

+

-P Position backwards one page.

+H Position forwards half a page.

-H Position backwards half a page.

T Position to top of program.

B Position to bottom of program.

++

+nnnn Position forwardsinnnlines (maximum 4 digits).

-nnnn Position backwardsnnnlines (maximum 4 digits).

nnnn Paosition to line numbernnn

X Position to the line marked with "X".

Y Position to the line marked with "Y".

POINT Positions to the line in which the line command ".N" was entéred.
See also théne command ".P"

178

Copyright © Software AG 2002

d

mand

time

Program Editor Line Commands

Line Commands

The line commands are listed below. The notationrif)" indicates a repetition factor. The default repetition
value is 1 (with the exception of the ".I" command; see below).

Note:
You are recommended to enter a blank at the end of each line command. This prevents the editor from
attempting to interpret any information existing on the line as part of the line command.

Line Function

Command

.C(nnnn Copies the line in which the command was entered.

.CX(nnnn Copies the X-marked or the Y-marked line. See also the line commands ".X" and ".Y" |as
.CY(nnnn well as the notes in the following section.

.CX-Y(nnnn Copies the block of lines delimited by the X and Y markers. (See also the notes in the
following section.)

.D(nnnn Deletes line or lines. The default is 1 line.

A(n) Insertsn empty lines, whera can be in the range from 1 to 9.

If nis not (or not correctly) specified, 9 lines (4 lines in split-screen mode) are inserted by
default. (See also the notes in the following section.)

I(obj,ssssnnnn) | Includes into the source an object contained in the current library or in the steplib (the|default
steplib is SYSTEM).

Depending on the direction indicator, the object is inserted before or after the line in which
you enter the command.

If you wish to include only part of the object, you specifgssshe first line to be included
(e.g., "20" means the inclusion will start from the 20th line), amthaathe number of lines
to be included.

If you enter multiple commands, this command is always executed after all other line @nd/or
editor commands have been executed.

If the object is a map, an INPUT USING MAP statement with all defined variables is
automatically included in the current line.

If the object is a data area, the entire data area is included, except comment lines.

Only stowed local and parameter data areas can be included into the source area; gldbal data
areas cannot be included.

J Joins the current line with the next line.

If the resulting line exceeds the length of the editor screen line, the line is marked with "L"
and must be split in two with the ".S" command (see below) before it can be modified.

.L Undoes all modifications that have been made to the line since the last time ENTER was
pressed.

.MX Moves the X-marked or the Y-marked line. See also the line commands ".X" and ".Y" as well

MY as the notes below.

MX-Y Moves the block of lines delimited by the X and Y markers (see also the notes below)

Copyright © Software AG 2002 179

Line Commands Program Editor

Line Function
Command
.N Marks (invisibly) a line to be positioned to the beginning of the source area bgitbe

command POINT

The mark is automatically deleted when an error with a line command or editor command

occurs.
P Positions the line marked by this command to the top of the screen.
.S Splits the line at the position marked by the cursor.
X Marks a line or the beginning of a block of lines, to be processed (see also the notes helow).
Y Marks a line or the end of a block of lines, to be processed (see also the notes below)

Note:

If both the commands ".X" and ".Y" are applied to one line, it is treated as being marked with "X" and with
"Y": the line marker actually shown to reflect this status is a "Z".

If the direction indicator is set to "+", the copied, inserted or moved lines are placed after the line in which
the corresponding command was entered,; if the direction indicator is set to "-", the copied, inserted or
moved lines are placed before the line in which the command was entered.

180 Copyright © Software AG 2002

Program Editor Special PF-Key Functions

Special PF-Key Functions

The following special functions can also be controlled using PF keys:

Function | Explanation

*CURSOR| A line split function can be combined with the command ".I", ".CX", ".CX-Y", ".MX" or
".MX-Y". This is accomplished by assigning the value "*CURSOR" to a PF key. If this PF key is
then pressed instead of ENTER after a line command has been entered, the line in which the
command was entered is first split at the cursor position and then the line command is exefuted.

*X*Y If a PF key is assigned the value "*X" or "*Y", the cursor position is marked X or Y whenever this
PF key is used. These column markers are then used to determine which portion of a line is to be
included in the command operation. See the example below.

Example:

XY
X 0010 MOVEATOB
0020 WRITEA B
Y 0030 MOVEB TO A
XY

0100 .MX-Y.....

The block of text starting with the "A" in line 0010 and ending with the "B" in line 0030 is moved:

0010 MOVE
0030 TO A

0010ATOB

0020 WRITE AB
0030 MOVE B

Copyright © Software AG 2002 181

Cursor-Sensitive Commands Program Editor

Cursor-Sensitive Commands

® The SCAN Commands
® The SPLIT Command
® The EDIT and LIST System Commands

Cursor-sensitive commands are commands where, instead of entering a name in the command line, you can mark
the name with the cursor anywhere on the editor screen (except in the command line). You can place the cursor
on any word that is not in the command line. It does not matter where on the word the cursor is placed.

The SCAN Commands

The SCAN [scan-valug command scans for data in theit arealf the SCAN command is used without any
parameter but with the cursor positioned outside the editor command line, this results in a scan operation for the
string the cursor is positioned to. If the cursor is positioned to a blank character, however, the SCAN menu is
invoked.

In split-screen mode, the cursor can be positioned to a string in the split-screen area, too. The scan operation,
however, is performed in the edit area only.

When using the SPLIT SCANdtan-valug command, the same applies as for the SCAN command, but the
scan operation is performed in the split-screen area only (see also the SplitiSereen Commanyls

Note:
To benefit from cursor sensitiveness as much as possible, the SCAN or SPLIT SCAN command should be
assigned to a PF key.

The SPLIT Command

Instead of the commands SPLIT PROGRAM, SPLIT DATA, SPLIT FUNCTION and SPLIT VIEW, which you
can use to display a programming object or DDM in the split-screen area of the editor (see also the section
Split-Screen Commanjsyou only have to enter the command SPLIT and place the cursor on the name of the
desired object. The object must be contained in the current library.

Note:
To benefit from cursor sensitiveness as much as possible, the SPLIT command should be assigned to a PF key.

182 Copyright © Software AG 2002

Program Editor The Exit Function

The EDIT and LIST System Commands

The system commands EDIT and LIST are cursor-sensitive, too. Instead of specifying an object name, the cursor
can be positioned to a text string of the object currently in the edit area that corresponds to the desired object
name.

With the EDIT command, the corresponding object is loaded into the editor. If necessary, even a different editor
is invoked.

With the LIST command, the corresponding object is listed, even if a view has been referenced.

For more information o&EDIT andLIST see the Natural Command Reference documentation.

The Exit Function

If the editor default parametéPrompt Window for Exit Function" is set to "Y", any time you enter the EXIT
command in the command line, the EXIT Function prompt window is invoked, offering you the following
options:

Option Explanation

Save and Exit |Leaves the editor and saves all modifications made to the current object.

Exit without Leaves the editor without saving any modification made to the current object since th¢ last
Saving SAVE command was entered.

Resume Neither leaves the editor nor saves any modifications; the prompt window is closed and the
Function current function is resumed. T

When "Prompt Window for Exit Function" is set to "N", the EXIT command leaves the editor and saves all
modifications made to the current object; no prompt window is displayed.

Copyright © Software AG 2002 183

Data Area Editor Data Area Editor

Data Area Editor

The Natural data area editor is used to define and maintain definitions for global, local and parameter data areas.

A data area definition can consist of user-defined variables, database views and global data blocks (a collection
of variables and/or views).

This section covers the following topics:

Invoking the Data Area Editor

Top Information Line

Bottom Information Line

Editor Command Line

Editing a Data Area

Editor Commands

Line Commands

The Exit Function

Defining Globally Unique IDs in the Local and Global Data Area Editors

Invoking the Data Area Editor

You invoke the data area editor with the system command EDIT, specifying a data area type (GLOBAL,

LOCAL or PARAMETER) or the name of a data area with the command (for details, see the system command
EDIT as described in the Natural Command Reference documentation). If you specify the name of a data area, it
is read into the edit area of the data area editor.

The data area editor screen appears with a local data area in the edit area:

Local TEST1 Library SAGTEST DBID 10 FNR 32
Command >+
I TL Name F Leng Index/Init/EM/Name/Comment
All - - -
* LDA for new application
1 INCOME A 20 (1:3,1:5) INIT ALL<'O’>
1 PERSON
2 SEX A 6
2 AGE N 3
1 NAME A 24
R 1 NAME /* REDEF. BEGIN : NAME
2 FIRST-NAME A 10
2 MIDDLE-INIT A 2
2 LAST-NAME A 10
C 1 DOLLAR A 5 CONST<'$US>
V 1 FINANCE-VIEW FINANCE
2 PERSONNEL-NUMBER N 8.0
P 2 MAJOR-CREDIT (1:1) /* PERIODIC GROUP
3 CREDIT-CARD A 18 (EM=XXX. XXX XXX XXX XXX.XXX)
3 CREDIT-LIMIT N 4.0
3 CURRENT-BALANCE N 4.0
----- Current Source Size: 625 Free: 61408 --------------------- S 12 L1

184 Copyright © Software AG 2002

Data Area Editor Top Information Line

Top Information Line

The top information line of the editor screen is used to display the type and name of the data area currently in the
editor, as well as the library, database ID and file number to which you are currently logged on.

Bottom Information Line

In the bottom information line of the editor screen, the following items of information are displayed:

Current Source SiZ Size (number of characters) of the current object. As source lines are stored in varlable
length in the work area, trailing blanks within a source line are not counted; leading and
embedded blanks are counted. This information is only displayed if the "Source Size
Information" parameter in the editor profile defaults is set to "Y".

Free The number of characters still available in the work area. This information is only
displayed if the "Source Size Information" parameter in the profile defaults is set to"Y".

S Size (number of lines) of the object being edited.

The number of the source line currently displayed as the top line.

Editor Command Line
The second line of the data editor screen is the edit command line. In this line, you can enter:

® a Natural system command (for example, EDIT, CHECK, SAVE),
® one or moreditor commands
e the name of a Natural data area to be executed.

In addition, the direction indicator can be set to control the direction of several editor and line commands. The
value "+" indicatesfter and the value "-" indicatdsefore. The exact interpretation is described with the
relevant command description.

Copyright © Software AG 2002 185

Editing a Data Area Data Area Editor

Editing a Data Area

The editor screen of the data area editor is divided into columns of fields with the following possible entries:

Field Explanation

I Label Indicator. Information field supplied by the editor. This column is not
modifiable by the user. Possible entries are:

E indicates that a definition error has been detected.
| indicates that an initial value has been defined via the ".E" line commahd.
M indicates that an edit mask has been defined via the ".E" line commang.

S indicates that both an initial value and an edit mask have been defined via
the ".E" line command.

Parameter Data Areas only (see dslit Field9:

blank indicates the parameter specification BY REFERENCE (default).
\% indicates the parameter specification BY VALUE.

R indicates the parameter specification BY VALUE RESULT.

T Type. Possible types are:

(o9)

Data block
Constant (user-defined variable only) or Counter field (database field only)

@]

*

Comment

Group

Multiple-value field

Handle of object

Periodic group

Redefinition

Globally Unigue Identifier (GUID)
View

< CXT TOZ WO

L Level number (1 - 9). Variables which are not within a hierarchical structure myst be
assigned level 1. View definitions must be assigned level 1. Level numbers capnot be
used with data block definitions.

NAME Name of the variable, block or view.

Instead of specifying a variable name, the filler optioX) (can be used. With the
filler option, "n" filler bytes can be denoted within a field or variable being redefined,

where"n" can be in the range from 1 to 253. The definition of trailing filler byteq is
optional.

F Format. Any format supported by Natural can be used.

LENG Length. No length is permitted for formats C, D, T and L.

186 Copyright © Software AG 2002

Data Area Editor

Editing a Data Area

Field Explanation
INDEX/INIT/EM/ This field can be used to define an array, to supply initial values for a variable
NAME/COMMENT supply an edit mask for a variable; for a view definition, the name of a DDM frg

which this view is derived must be entered; for a block definition, the name of
parent block must be entered; and a comment can be entered. See also the e
below.

Together with an edit mask, also a field header (HD) and the print mode (PM)
defined:

(HD="Name’' EM=XXX.XXX.XX PM=N)

See the Natural Parameter Reference documentation for further information or
PM session parameter.

Since this field may be too short to make all necessary or desired specification
additional Edit Fields facility is provided with tHéE" line command

Note:
When defining a view, the name of the DDM from which this view is derived c3
modified. However, this is only possible if all fields of the view are also contain

br to

m

he
amples

can be

n be
pd in

the DDM with the modified name.

Examples of Array Definitions:

(2,2) (2 dimensions, 2 occurrences)
(2,2,2) (3 dimensions, 2 occurrences)

(1:10,2)
(-1:3,2)

Examples of Initial Value Assignments:

INIT<3>
INIT<’ABC’>
INIT<H'FF’>
CONST<12>

Example of an Edit Mask Definition:

(EM=999.99)

Copyright © Software AG 2002 187

Editor Commands

Data Area Editor

Editor Commands

The following editor commands can be entered in the command line of the data area editor:

Command

Function

CATALOG [namé

This command catalogs the data area definition currently in the edit area.

CHECK

This command checks the data area definition currently located in the edit area.
It also orders the entries INDEX/INIT/EM/NAME/COMMENT in the sequence sh
on the editor screen.

own

CLEAR

This command clears the edit area.

CREATEGLOBALS

This command can only be used for a library created using Natural Version 1.2.
collects all global variables contained in cataloged objects (not saved objects) o
current library and places them in a global data area named "COMMON".

It
f the

The asterisk notation can be used to restrict processing to only those objects whose

names begin with the specified value. For example:

CREATE GLOBALS * (all objects)
CREATE GLOBALS ABC* (all objects beginning with ABC)

EXIT

With this command yoleave the data area editor

GENERATE[namé

This command generates Natural copycode using the data area definitions curre

pntly in

the edit area. A DEFINE DATA LOCAL and corresponding END-DEFINE statenent

are automatically included. Ifrrameis entered, the generated copycode is saved
this name.

inder

PROFILE[namé

This command displays thoeirrent editor profile

READ name

This command reads an existing data area definition into the edit area.

SET ABS [ON|OFF]

This command determines whether the SCAN command operates in absolute o
non-absolute mode.

ON: the SCAN command operates in absolute mode, which means that the va
be scanned need not be delimited by blanks or special characters.

OFF: the SCAN command operates in hon-absolute mode, which means that th
value to be scanned must be delimited by blanks or special characters.

The default is OFF.

lue to

SET PREFIX
<prefix>/off

This command allows you to specify a prefix for field names.

This prefix is then automatically placed before the value entered in the "Name"
column for each line that is entered or modified, unless the name already begins
this prefix.

If the concatenated variable is longer than 32 bytes, a message is given and thq

with

value

in the name field can be shortened. If this is not done, the prefix will not be inse||ted.

188

Copyright © Software AG 2002

Data Area Editor

Editor Commands

Command

Function

SET SCAN
COMMENT|NAME

If SET SCAN is set to COMMENT, you can scan for a value in the "Comment"
column.

If SET SCAN is set to NAME, you can scan for a value in the "Name" column.

You cannot scan in both columns simultaneously; the default is NAME.

SET SIZE ON|OFF

If SET SIZE is set t@N, the size of the data area is displayed at the bottom
information line of the editor screen.

SET STAY ON|OFF

If STAY is set to ON, the current screen will stay when ENTER is pressed. Forw
and backward positioning can be done by positioning commands only.

If STAY is set to OFF, pressing ENTER positions to the next screen.

SET TYPE This command sets the data area object type:
G Global data area
L Local data area
P Parameter data area
STOW[namég This command saves and catalogs the data area definition currently in the edit

Copyright © Software AG 2002 189

ard

irea.

Line Commands Data Area Editor

Line Commands

All line commands described for the Natural program editor (except those which require a line number) can be
used in the data area editor as well.

You are recommended to enter a blank at the end of each line command. This prevents the editor from
attempting to interpret any information existing on the line as part of the line command.

In addition, the following line commands are available for the data area editor:

Command Function

.D This command deletes one or more lines.
When entered for an individual field, only that field definition is deleted.

When entered for a part of a hierarchical structure (view, group, redefinition), al
subsequent definitions on subordinate levels are also deleted. If, for example, ypu
enter ".D" for a group defined at level 2, everything belonging to that group and with a
level number greater than 2 is also deleted up to (but not including) the next levgl 2
definition. Comment lines (which usually are not assigned a level) are also condidered
to be at a subordinate level. To avoid the undesired deletion of a comment, assign an
appropriate level to it.

Note:
In the data area editor, the ".D" command works differently from the program editor.

.D(nnnn This command deletesinnlines, beginning with the line in which you enter the
command. Unlike ".D" (see above), "inn" affects only the number of lines
specified, regardless of any hierarchical structure.

E This command invokesseparate scredor the definition of initial values and edit
masks.

If ".E" is executed for a DDM field, the Edit Mask screen is invoked immediately
since only edit masks (and no initial values) can be defined.

.F(file-namé§ This command includes a Predict file (applicable to file types: Conceptual, Stanflard,
Sequential, Other).

A(n) This command addsempty lines, whera can be in the range from 1 to 9nlfs not
(or not correctly) specified, 10 lines (5 lines in split-screen mode) are added by
default.

If the direction indicator is set to "+", the lines are added after the current line of|the
object being edited; if the direction indicator is set to "-", the lines are inserted bg¢fore
the current line.

190 Copyright © Software AG 2002

Data Area Editor

Line Commands

Command

Function

I(obj)

This command includes a Natural object. Apart from data areas, the following o
types can be specified:

programs,
subprograms,
subroutines,
helproutines,
maps.

If the object specified asbj is not a data area, it must be available as cataloged g
A window appears in the data area editor screen where you can select one of th
following data definitions to be incorporated into your current data area:

- all local variables and parameters contained in the specified object (includir]
those incorporated from local and/or parameter data areas),

- all local variables contained in the specified object (including those incorpor
from local data areas),

- only those local variables defined within the specified object,

- all parameters contained in the specified object (including those incorporatg
from parameter data areas),

- only those parameters defined within the specified object.

If you incorporate variable definitions from objects without a DEFINE DATA
definition (that is, from objects coded in reporting mode), variable redefinitions (

Dject

bject.
e

ated

5ee

the REDEFINEstatement in the Natural Statements documentation) might be placed

to a wrong position; that is, after the wrong variable. So, before compiling your 1
data area, check all variable definitions and redefinitions for correct positioning.

If a variable redefinition results in more than one variable, each variable is
incorporated as one individual redefinition using filler bytes where appropriate.

If the specified object has been cataloged using the Natural Optimizer Compiler,
values and constants cannot be incorporated.

ew

initial

.I(obj,ssssnnnn

This command includes a global, local or parameter data area. This feature is 0
supported for data areas which do not contain initial values or edit masks.

The "sss& entry can be used to indicate at which line the insertion is to begin. Fg
example, when setting$ss'to 20, the insertion begins with the 20th line of the dg
area. Therfinnr' entry can be used to indicate the number of lines to be inserted

If "ssss"and/or'nnnn" is specified for an object other than a data area (seKdhp
command), the specified value(s) are ignored.

=

This command redefines a field or variable.

With the filler option (X), n filler bytes can be denoted within a field or variable

being redefined. The definition of trailing filler bytes is optional.

Copyright © Software AG 2002 191

Line Commands

Data Area Editor

Command

Function

WV
[(view-namgNOFL])]

This command defines a view.

A view (DDM) layout is displayed. You then select the fields from the view which are

to be used in the program.
If no view name is specified, the view currently in the split screen is included.

If ".V view-naméis specified within a view of the same name as specified for
view-namethe selected fields are included in this view and no new view is defin

If NOFL is specified, the selected fields are included without format and length
specification.

When a periodic group or multiple-value field defined - in a DDM generated with
Predict - as "PC" or "MC" respectively is included in a data area, a C* variable

(internal count of occurrences) for the group or field is automatically generated and

placed before the group or field. The index for such a periodic group or multiple
field is defined with the number of occurrences defined in Predict. If the number
occurrences has not been defined in Predict, the maximum occurrences (191) 3

If Predict is active, Predict redefinitions and comments are incorporated, too.

Note:

With VSAM views, always the actual number of occurrences is displayed. In ad
VSAM views contain information on subdescriptors and superdescriptors (for fu
information, see théNatural for VSAMdocumentation.

value
of
re used.

lition,
'ther

This command generates a C* variable for multiple-value fields or fields within 3
periodic group.

number{(nnn,m]

This command is available in split-screen mode and with a view in the split-scre
area only.

To obtain fields and groups from the split-screen area, the level number of the f
group from the split-screen area must be specified in the first column (without a
setting of the direction indicator ("+" or "-"). Fields and groups from the split-scre
area can be included as fields of a viewn(imberis entered inside a view) or as us
variables.

If the selected field has the same name as the field for which the command was
entered, it is substituted instead of inserted.

Multiple lines can be obtained from the split screen usingrtha''hotation where
nnnis the number of lines to be included.

The 'm" notation can be used to specify a level number to be assigned to the fie
group to be inserted.

eld or
period

."). The field or group is inserted before or after the current line, depending on the

en
er

d or

Note:

".I(obj.)", ".R" and ".*" are available in full-screen mode only, not in split-screen mode.

192

Copyright © Software AG 2002

Data Area Editor Edit Fields

Edit Fields

» To invoke the Initial Values and Edit Mask menu
e Enter the ".E" line command in front of a specific field.

This feature is not available for redefined fields.

17:11:57 xkxkk EDIT FIELD ***** 2000-07-12
- Initial Values and Edit Mask -

Local SAGAREA Library SAGTEST DBID 10 FNR 49

Code Function Definition

S Single Value Initialization no
F Free Mode Initialization no
E Edit Mask Definition no
P Parameter Type no
D Delete all Definitions

? Help

Exit

Code ? for Field: FIELD1(A10/1:2)

If any initial values or edit masks have been defined, the corresponding status message in the Definition column
of the Initial Values and Edit Mask screen is changed from "no" to "yes".

Copyright © Software AG 2002 193

Edit Fields Data Area Editor

The following functions are available:

Code

Function

S

This function enables you to define an initial value for the specified field. You need only enter th
desired field value; any further specifications necessary (including apostrophes for alphanumeri
are generated automatically. For an array (multiple-value field), an initial value can (but does no
necessarily have to) be defined for each occurrence.

With arrays, asterisk notation (*) can be entered in the command line to repeat the value in the |
of the previous page until the end of the current page.

a)

C fields)
|

ast line

This function, too, enables you to define an initial value for the specified field. However, a free-njode

editor is provided where you can enter your initial value definitions according to the common Na
syntax definitions. In this way, for example, the same initial value can be assigned to a whole ra
field occurrences at a time. During editing, however, the specified values are not checked (unleg
enter theCHECK command).

tural
hge of
S you

This function enables you to define an edit mask and/or header for the specified field according
Natural rules for edit mask specification.

If both an edit mask and a header are specified, together they must not exceed 57 characters in
However, if only an edit mask is specified, it can be up to 63 characters long; if only a header hg
specified, it can be up to 58 characters long.

If ".E" has been executed for a DDM field, this function is invoked immediately, since only edit nj
(and no initial values) can be defined for DDM fields.

to the

length.
s been

asks

This function enables you to delete, at a stroke, all definitions made via the "S", "F" and "E" fung

Any "yes" status messages are changed to "no".

tions.

This function only applies to Parameter Data Areas and enables you to specify a parameter BY
REFERENCE (default), BY VALUE or BY VALUE RESULT.

See alsd®?arameter-Data-Definitiom the DEFINE DATA section of the Natural Statements

documentation.

Any definitions made within the Initial Values and Edit Mask function are immediately incorporated into the
data area currently in your data area editor.

194

Copyright © Software AG 2002

Data Area Editor

Special Commands Available within the Edit Fields Function

Special Commands Available within the Edit Fields Function

The following commands can be entered in the command line of any edit field subfunction:

Command

Function

EDIT

This command returns you to your data area editor screen

This command returns you to the previous screen to continue

processing.

This command returns you to the beginning of the initial va

specification(s). It is only available for arrays in Single Value

Initialization mode.

This command takes you one page forward. If the last pag¢ has

been reached or if there is only one page available, you ar¢

returned to your data area editor screen.

This command copies the initial value of the last occurrencg of

the previous page to all empty fields of the current page. Itfi

only available for arrays in Single Value Initialization mode

The ".E" Line Command with Control Variables

When the ".E" line command is entered in front of a control variable, the Define Attributes screen is invoked,
where attributes and colors can be specified as initial values for control variables.

For details on attributes and colors, see the session parafietarslCD in the Natural Parameter Reference

documentation.

Copyright © Software AG 2002

195

The Exit Function Data Area Editor

The Exit Function

If the editor default parametéPrompt Window for Exit Function" is set to "Y", any time you enter the EXIT
command in the command line, the EXIT Function prompt window is invoked, offering you the following
options:

Option Explanation

Save and Exit |Leaves the editor and saves all modifications made to the current object.

Exit without Leaves the editor without saving any modification made to the current object since th¢ last
Saving SAVE command was entered.

Resume Neither leaves the editor nor saves any modifications; the prompt window is closed and the
Function current function is resumed. T

When the parameter "Prompt Window for Exit Function" is set to "N", the EXIT command leaves the editor and
saves all modifications made to the current object; no prompt window is displayed.

Defining Globally Unique IDs in the Local and Global
Data Area Editors

The definition of Globally Unique IDs (GUIDs) requires NaturalX and is possible under TSO and OS/390 Batch
only.

To define a GUID, enter "U" in the T(ype) column and fill the L(evel) and the Name columns.
Format and length will be inserted automatically when you confirm your entry.

If it is possible to generate the GUID in the current Natural environment, it will be inserted as a protected const
in the free mode editing section.

If the GUID cannot be generated, the information will be displayed in the comment field and the free mode init
field that it has not been inserted. In this case, you can insert the GUID into the source of the data area by using
the interface USR2022 in the library SYSEXT.

196 Copyright © Software AG 2002

Map Editor Map Editor

Map Editor

The Natural map editor is used to create maps (screen layouts).

A map can be stored in the Natural system file, from where it can be invoked by a Natural program using an
INPUT USING MAP statement (for input maps) or a WRITE USING MAP statement (for output maps).

This section covers the following topics:

Components of the Map Editor
Summary of Map Creation
Invoking the Map Editor
Initializing a Map

Editing a Map

Defining Map Fields

Extended Field Editing

Post Assignment Function
Array and Table Definition
Processing Rules

See also:

e Tutorial - Using the Map Editor

Copyright © Software AG 2002 197

Components of the Map Editor Map Editor

Components of the Map Editor

The following figure provides an overview of the various components of the map editor and also shows the
possible ways to get from one component to another:

¥ Edit Map * * Map P rofile
bl eriu Maintenance
| Local Data Definitions Map testing
+| Parameter Definitions
Field Definitions hap Editing Define
Summary SCrEEN Map Settings
P —
Processing E}{|t:?2|t,1|8d Array %ﬁ;
Fules Defintion
Editing Definition

198 Copyright © Software AG 2002

Map Editor Summary of Map Creation

Summary of Map Creation

Map creation involves four major steps:

Step 1

Definition of the map profile (that is, the field delimiters, format settings, context settings and filler characters to
be used) by simply selecting the desired settings from a menu.

Step 2

Definition of the map. A map definition can be created before or after the data views that define the fields it
contains. These two ways of creating a map definition are:

® First create a prototype map definition, next create the corresponding data views, then integrate the map into
the application.
Fields can be defined directly on the screen. Each field is assigned a default name. Subsequently, when the
corresponding data views have been created, the actual field definitions can be assigned to the map fields
(post assignment).

® Create a map definition using existing data views.
If data views already exist, the map fields can be created by using the field definitions contained in the data
views. In this case, all characteristics of a field defined in the data views are included when the field is
positioned on the screen.

Step 3

Definition of the fields to be used in the map. A full set of map editing facilities is provided which permit simple
and efficient map field definition:

® Full-screen or split-screen editing. In split-screen mode, the upper half of the screen is used for the display
of user views or data definitions and the lower half for map definition. Map fields can be defined directly on
the screen or can be selected from a user view or data definition.

Screen positioning commands.

Line commands, which are used to define tables and manipulate lines.

Field commands, which are used to define arrays and manipulate fields.

Editor facilities, which are used to edit processing (validation) rules.

Step 4

Storing the map definition. Once created, the map definition can be saved and/or cataloged in the Natural system
file. Once saved, a map definition can be read and modified during a subsequent map editor session. Once
cataloged, a map definition can be invoked from a Natural program.

Note:
The map editor uses tiaito Save Numberiinction of the program and data area editors.

Copyright © Software AG 2002 199

Invoking the Map Editor Map Editor

Invoking the Map Editor
You invoke the map editor with the system command:
EDIT MAP
If there is already a map in the source area, the map definition is displayed.

If the source area is empty, the Edit Map menu, which is the main menu of the map editor, is displayed:

16:49:52 reekk NATURAL MAP EDITOR ***** 2001-01-17
User SAG - Edit Map - Library SYSTEM

Code Function
D Field and Variable Definitions
E Edit Map

| Initialize new Map

H Initialize a new Help Map

M Maintenance of Profiles & Devices
S Save Map
T

W

?

Test Map
Stow Map
Help

Exit

Code .. | Name .. Profile .. SYSPROF _

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Test Edit

200 Copyright © Software AG 2002

Map Editor Invoking the Map Editor

The following entries appear on the Edit Map menu:

. For

Entry |Explanation
User | The Natural user ID of the current user.
Library | The Natural library ID currently in effect.
Code |The code of the function to be executed (see below).
Name | The source member which contains the map or help map.
For multi-lingual maps, one digit of the source name should be reserved for the language codé
example:
USERMAPIL (language code i¥)
The map above is called from the program by:
INPUT USING MAP "USERMAP&’
where "&" is replaced with the content of the system variable *LANGUAGE at execution time.
Profile | The session profile currently in effect.

The profile name is set to the current library ID. If this profile ID is not available, it is set to the

current user ID. If this profile ID is not available, the profile name is set to "SYSPROF".

Copyright © Software AG 2002 201

Overview of Functions

Overview of Functions

The following functions appear on the Edit Map menu:

Field and Variable Definitions

"Field Definitions" displays the following information for each map field:

Field Name (name of the field)

Field Mode (type of field), where:

D means Data Area Field,

S means System Variable,

U means User-Defined Field,

V means View Field,

blankmeans Undefined Field

Field Format (data type and field length)
Field is an Array (A) or not ("blank")
Number of attached Processing Rules
Line and Column position.

Map Editor

This function is equivalent to line command "..E*" entered in the first map line.

202

Copyright © Software AG 2002

Map Editor Overview of Functions

The following commands are available within the Field Definitions subfunction:

Command| Description
A Define array
D Delete field
E Edit map field
Prr Edit processing rulp
-- Top
Exit

"Variable Definitions" displays all non-map field parameters and all local variables used in the map.

® Name

Format

® TheParameter Definitions function is invoked by pressing PF9 on the Field Definitions screen; new
parameters can be added and existing parameters can be modified.

® Thelocal Data Definitions function is invoked by pressing PF10 on the Field Definitions screen; new
local variables can be added and existing variables can be modified. Local variables can be used to pass
values from one processing rule to another.

The following commands are available within the two Variable Definitions subfunctions:

Command| Description
A Define array
D Delete variable
-- Top
Exit
Note:

Command "D" does not delete a parameter if this parameter is still applied to any map field as a control variable,
start value or help parameter.

Edit Map
Invokes the map editing screen to modify an existing map or help map definition.

The map editor starts an edit session in split-screen mode, where the upper half of the screen is used for user
view definitions and the lower half for map definition. If the map being edited is a help map definition,
full-screen mode is in effect.

Initialize a New Map

This functioncan be executed only if no object with the same name is stored in the Natural system file.
Initialize a New Help Map

This functionshould be used to create a help map, since it offers you the most flexibility when entering and

editing text (leading blanks must be entered). It also provides additional checks to ensure that a valid help map is
created.

Copyright © Software AG 2002 203

Overview of Functions Map Editor

The function can be executed only if no source and no object with the same name is present in the Natural
system file.

A help map is stored as a map and can be referenced with the parameter "HE" in the map definition.

When initializing or editing a help map, you can specify in the map settings where the help map is to appear on
the screen at execution time.

204 Copyright © Software AG 2002

Map Editor Overview of Functions

Maintenance of Profiles & Devices

This function allows you to add, modify or delete session, map and device profiles.

A session profile is used to assign default map settings to be used when a map or a help map is initialized.
A map profile defines the map settings to be in effect during map definition and execution.

A device profile defines the standard characteristics and settings for a device. This profile can be used to ensure
compatibility between the map definition and the device to be used.

See also the section Context and setbegice Check

Save Map

The map definition is stored in source form in the Natural system file.
Test Map

The current map definition is tested to ensure that it can be executed successfully. This includes testing of all
processing rules and help facilities.

When testing a map, any additionally created numeric map parameters are initialized with the value 1.
Stow Map

Catalog (and save) a map definition. The map definition is cataloged and also stored in source form in the
Natural system file.

Copyright © Software AG 2002 205

Initializing a Map Map Editor

Initializing a Map

This section describes the process of defining the map settings (profile) for a map or help map definition. When

you select the function "Initialize New Map" or "Initialize a New Help Map", the first screen to be invoked is the
Define Map Settings screen:

09:36:47 Define Map Settings for MAP 2001-01-17
Delimiters Format Context

Cls Att CD Del Page Size 23 Device Check

T D BLANK Line Size 79 WRITE Statement

TI1 ? Column Shift ... 1 (0/1) INPUT Statement X

A D _ Layout Help

Al) dynamic N (Y/N) as field default N (Y/N)

O D + Zero Print N (Y/N)

o1 (Case Default ... UC (UC/LC)

M D & Manual Skip N (Y/N) Automatic Rule Rank 1
M 1o Decimal Char Profile Name SYSPROF

Standard Keys .. N (Y/N)

Justification .. L (L/R) Filler Characters

Print Mode e
Optional, Partial _

Control Var Required, Partial _
Optional, Complete ... _
Required, Complete ... _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Let

The Define Map Settings screen comprises the sections:

® Delimiters

® Format

e Context

e Filler Characters

206 Copyright © Software AG 2002

Map Editor Delimiters

Delimiters

Delimiters are used as a prefix to a field or a text constant to indicate class, attribute and color to be assigned to
the field or text constant.

Valid classes are:

Class| Description

A Input field

Output field which is modifiable

M
(0] Output field which is not modifiable
T

Text constant

Valid attributes are:

Attribute | Description

B Blinking

C Cursive/italic

D Default (non-intensified, non-blinking, etc.)

I Intensified

N Non-display

u Underlined

Y Reversed video

Y Dynamic (attributes to be assigned dynamically by a program)

Valid colors are:

Abbreviation | Color

BL Blue

GR Green

NE Neutral

Pl Pink

RE Red

TU Turquoise
YE Yellow

Any special character can be defined as a delimiter character - except the control character for terminal
commands, the control character for map commands and the decimal notation character.

Thedefaultdelimiter characters and their corresponding class and attribute settings are shown in the following
table:

Copyright © Software AG 2002 207

Format Map Editor
Class (Cls) Attribute (Attr) | Delimiter (Del)

T (text constant) | D (default) blank

T (text constant) || (intensified) |?

A (input only field) | D (default)

A (input only field) |1 (intensified)

O (output only field) D (default)

)
+
O (output only field) | (intensified) | (
M (modifiable field)| D (default) &

M (modifiable field)| I (intensified)

These defaults can be changed by the Natural administrator by creating a session profile SYSPROF. They can be
changed by the user by either creating own session profiles or changing map settings during the initialization of
the map. This is done by simply entering the desired delimiter value in place of the default assignment.

See the sectiobefining Map Fielddor examples of delimiter usage.

Format

The following map format settings can be used:

Entry

Explanation

Page Size

The number of map lines to be edited (1 - 2503t#ndard Keyss set to "Y", the number of
lines is restricted to 3 - 250.

For a map which is output withi'@RITE statementyou specify the number of lines of the
logical page output with the WRITE statement, not the map size. Thus, the map can be
several times on one page.

output

Line Size

The number of map columns to be edited (5 - 249).

Column Shift

Column shift (0 or 1) to be applied to the map. This feature can be used to address all 8
columns on a 80-column screen (Column Shift = 1, Line Size = 80). Positional comman
(PF10, PF11) must be used to edit all map positions.

Layout

The name of a map source definition which contains a predefined layout.

dynamic

Y Specifies the layout to be dynamic. The dynamically used layout does not become
part of the map at compilation time, but is executed at runtime. Thus, subsequent
modifications of a layout map become effective for all maps using that layout map.
If the layout map includes user-defined variables, you have to define these parame
the map using the layout map. Input fields and modifiable fields in the layout map &
open at runtime. Parameters can be added by pressing PF9 within the Field and V
Definitions function.

N Specifies the layout to be static. The static layout is copied into the source area wh
map is initialized. Filler characters are not transferred; "N" is the default setting.

a fixed

ters in
re not
ariable

en a

Zero Print

Y Displays a field value of all zeros as one zero only.

N Displays a zero value as blanks; "N" is the default setting.

This value is copied into the field definition when a new field is created and can be mod
for individual fields using the extended field editing function.

fied

208

Copyright © Software AG 2002

Map Editor

Format

Entry

Explanation

Case Default

UC Indicates that all input entered for fields at map execution time is to be converted tp

upper case, that is, the session paranfdderT is used as a field default.

LC Indicates that no lower to upper case conversion is to be performed, that is, the sejssion

parameteAD=W is used as a field default. To make the value LC effective, you ha
specify the value ON for the Natural profile paraméter

This value is copied into the field definition when a new field is created and can be mod
for individual fields using the extended field editing function.

Manual Skip

Y Doesnot automatically move the cursor to the next field in the map at execution time

even if the current field is completely filled.

N Moves the cursor automatically to the next field in the map at execution time when
current field is completely filled; "N" is the default setting.

Decimal Char

The character to be used as the decimal notation character. This character can only be
with the GLOBALS command.

Standard Key

Y Leaves the last two lines of the map empty so that function-key specifications can
entered at execution time.

N Causes all lines to be used for the map; "N" is the default setting.

e to

fied

the

changed

be

a user

Justification | The type of field justification to be used for numeric and alphanumeric fields taken from
view or data definition:
L left justified
R right justified
This value is copied into the field definition when a new field is created.
Print Mode | The default print mode for variables:
C Indicates that an alternative character set is to be used (special character table a
defined by the Natural administrator).
D Indicates that double byte character mode is to be used.
| Indicates inverse print direction.
N Indicates standard print direction.
This value is copied into the field definition when a new field is created.
Control Var | The name of a control variable, the content of which determines the attribute characteri

fields and texts that have the attribute definition AD=Y or (Y). The control variable referg
in the map must be defined in the program using that map.

Removing a control variable from the format map settings implies that the control variab
removed from the map, too, unless it is associated to any other map field.

stics of
nced

le is

Copyright © Software AG 2002 209

Context Map Editor

Context

The following map context settings can be used:

Entry Explanation

Device Check If a device name is entered in this field, the map settings are checked for compat|bility
with the device profile of the specified device. If a setting is not compatible, a waring
message is issued (see also the seMimntenance of Profiles & Devicgs

WRITE Statement | Marking this field with a non-blank value produces a WRITE statement at the end of the
map definition process. The resulting map can then be invoked from a Natural program
using a WRITE USING MAP statement. Empty lines at the end of the map are

automatically deleted so that the map can be output several times on one page.

INPUT Statement | Marking this field with a non-blank value causes the result of the map definition pfocess
to be an INPUT statement. The resulting map can then be invoked from a Natura
program using an INPUT USING MAP statement.

Help The name of a helproutine which is invoked at execution time when the help funcfion is
invoked for this map (global help for map). For a detailed explanation of the syntgx,
refer to the specification of thgarameter "HE"

as field default Y Specifies that the helproutine for the map is to apply as default to each indiv|dual
field on the map, which means that the name of each field is passed individyally
to the helproutine.

N Specifies that the name of the map is passed to the helproutine; "N" is the default
setting.

Note:

If you define the map settings for a help map, on the Define Map Settings for
HELPMAP screen, the "Help" and "as field defaults" fields are replaced by the
"Position Line Col" field described below.

Position Line Col The position where the help map is to appear on the screen at execution time.

This field only appears if you define the map settings for a help map. It replaces the
"Help" and "as field defaults" fields on the Define Map Settings for HELPMAP scrgen.

Automatic Rule Ran| The rank (priority) assigned to automatic Predict rules when they are linked to thg map
during field definition. Default is 1.

Profile Name The name of the profile which was active at map initialization time.
If "ENFORCED" is displayed, the following map settings are protected:

® all map delimiters

e static and dynamic layout

® device check

e WRITE and INPUT statements
e all filler characters

® automatic rule rank

® positioning of help maps

The name of the profile active at the time the map is created is stored within the map.
When the map is edited later and another profile is active, a warning is produced [but
editing is allowed.

210 Copyright © Software AG 2002

Map Editor Filler Characters

Filler Characters

Filler characters can be assigned to indicate whether information for a field is mandatory and whether the field
must be completely filled:

Field Type Explanation

Optional, Partial | Input not mandatory, field need not be completely filled.

Required, Partial | Input mandatory, field need not be completely filled (AD=E).

G)
~

Optional, Complete Input not mandatory; if filled, field must be completely filled (AD=

Required, Complet Input mandatory, field must be completely filled (AD=EG).

Filler characters can also be defined for individual fields using the extended field editing function. For definition
of field types, see also the session paramfdieas described in the Natural Parameter Reference
documentation.

Copyright © Software AG 2002 211

Editing a Map Map Editor

Editing a Map

The map editor begins an edit session always in split-screen mode, which means that the upper half of the screen
is used for user-view definitions and the lower half for map definition:

Ob _ Ob D CLSATRDEL CLS ATR DEL

D Bink T1 ?
D Al)
N
|
|

|
<
@)
R0

b
T
A
A
M :
o1l (

001 =-010--+=memtmemerb o030 memerbommbame05 0 mrommebememboe-0 7 Onmeb-

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit - - + Full < > Let

PF9 can be used to switch between full-screen and split-screen mode.

If the rightmost of the view definition windows does not contain a view, the current delimiter settings are
displayed in this window instead.

Entering a period (.) in the first position of the leftmost view window returns you to the Edit Map menu.
The following commands and functions are available for editing a map:

e Commands and Function Keys for Positioning
® Line Commands
® Field Commands

212 Copyright © Software AG 2002

Map Editor Commands and Function Keys for Positioning

Commands and Function Keys for Positioning

The commands and PF keys listed below can be used for map positioning on the screen; you enter the commands
at the beginning of a map line:

Key |Command|Function
PF1 Invoke map editor help facility.
PF2 Display/modify the current map settings.
PF3 |.Q Terminate map editing and return to Edit Map menu.
PF4 Test the map definition (without Predict rules).
PF5 Invoke extended field editing for field at which the cursor is currently positipned.
PF6 | .- - Move to top of map.
PF7 | .- Move upwards half a window page.
.-Nnn Move upwardsinnlines.
PF8 | .+ Move downwards half a window page.
+nnn Move downwardsnnlines.
At Move to bottom of map.
PF9 |./ Switch between split-screen and full-screen mode.
PF10 .< Move to the left half a window page.
.<nnn Move to the lefnnncolumns.
<< Move to the left border of the map.
PF11 > Move to the right half a window page.
.>nnn Move to the rightinncolumns.
S>> Move to the right border of the map.
PF12 Ignore changes made on screen subsequent to last use of ENTER.
i Move top left corner to cursor position.

Copyright © Software AG 2002 213

Line Commands Map Editor

Line Commands

Line commands must be entered in the fortimé&-commantwhere ".." represents two occurrences of the
control character in effect for the map definition.

It is recommended that you enter a blank at the end of each line command. This prevents the editor from
attempting to interpret any information existing on the line as part of the line command.

The following line commands are available:

Command| Function

A Array table definition

../An Array table definition witm occurrences.
This command can be used to create a tablemaitturrences vertically for all fields specified jn
the current line.

.C Center a single line (that is, the line in which the command was entered).
Two "..C" commands entered on the same screen center the first line and adjust the rest of the
selected lines.

..Cn Center line and move thel lines below it accordingly.

..C* Center line and move all lines below it accordingly.

.D Delete a single line (that is, the line in which the command was entered).
Two "..D" commands entered on the same screen delete the block of lines delimited by thgse
commands.

..Dn Delete line and the-1 lines below it.

..D* Delete line and all lines below it.
If the delete operation affects array elements the array is deleted in total.

.E Invoke the extended field editing function for all fields contained in the line.
Two "..E" commands entered on the same screen display all fields within the range of lines
delimited by these commands for possible extended field editing.

..En Invoke extended field editing for the line and thi lines below it.

LE* Invoke extended field editing for the line and all lines below it.
The "..E" commands display a screen with the name and format of the requested fields. The field
names shown can be modified. The CMD column can be used to select the desired functign:
extended field editingarray definitionandprocessing rule editing

.Fc Fill the empty spaces of a line with the character

N Insert a single line.
The last empty line on the screen is deleted in order to allow for the line insertion.

.In Insertn lines below the line in which the command was entered.

LI Insert as many lines as possible below the command line.

214 Copyright © Software AG 2002

Map Editor Line Commands

Command| Function

.J Join the line in which the command was entered with the line below it.
Two "..J" commands entered on the same screen joins the range of lines delimited by the
commands.

N g Join the line in which the command was entered witnthdines below it.

JF Join the line with all lines below it.
If a join operation results in a line being too long, the lower line is split at the rightmost possible
position and the left part is then joined with the previous line. The right part of the split line |s then
shifted to the left to align it with the line in which the command was entered.

.M Move the line in which the command was entered below the cursor line.
If two "..M" commands are entered on the same screen, the block of lines delimited by the
commands is moved below the line marked with the cursor.

..Mn Move the line and the-1 lines below it below the line marked with the cursor.

.M* Move the line in which the command is entered and all lines below it to the line below the line
marked with the cursor.
This command is only practical if the line marked with the cursor is above the line in which fthe
command is entered.

.P Invoke PF-key processing rule editing.
PF-key processing rules are special processing rules to define activities assigned to progrgm
sensitive function keys.

P Invoke PF-key processing rule editing for rank lavel

.Q Terminate map editing and return to the Edit Map menu.

R Repeat once all text constants on the line in which the command was entered. The cursor position
is used to indicate the target line.
If two "..R" commands are entered on the same screen, the text constants within the block|of lines
delimited by the commands are repeated.

..Rn Repeat all text constants on this andrttiefollowing lines. If the cursor is located below the
command line, the same text is repeat¢iches.

.S Split line at cursor position.
If two "..S" commands are entered on the same screen, the block of lines delimited by the
commands are split.

S Split the line where the command is entered andthdines below it at the cursor position.

Copyright © Software AG 2002 215

Field Commands Map Editor

Field Commands

Field commands must be entered in the forfirrlti-commantiwhere "." represents the control character in
effect for the map definition. Each command must begin in the first position of a map field or text constant.

A field command can be applied to a range of fields or constants. A range can be specified in any of the
following ways:

® Two or more of the same field commands can be used on the same screen. The column range (horizontal
range) and the line range (vertical range) are determined by the positions of the commands. (The section
Tutorial - Using the Map Editgerovides examples which illustrate this.)

® A repetition facton can be used. It can be enclosed within parentheses. The command is applied to the
designated field and also to the fields intikk lines below it. A repetition factor of "*" causes repetition
until the bottom of the map is reached.

It is recommended that you enter a blank at the end of each field command. This prevents the editor from
attempting to interpret part of the field as part of the field command.

The following field commands are available:

Command| Function

A Define an Array. This command can be applied to a single field only and not to a range of fijelds.

Thearray definitionis specified on the screen provided. The resulting array is positioned with its
left upper corner at the position where this command was entered.

An array can be redefined by applying the ".A" command to one of its elements.

A>n Supply a repetition factar with the ".A" command for the purpose of defining a one dimensignal
array (no spacing, no offsets) without having to use a separate screen.

.C Center a field or range of fields between adjoining fields.
To center a single field, enter ".C" in the field to be centered.

To center a range of fields, enter ".C" in the first and last field to be centered, or enter ".C" |n the
first field and position the cursor to the last field to be centered.

In the event that an adjoining field or fields are not present, the column boundaries in effec} for the
map definition are used instead.

.D Delete a field or range of fields.
To delete a single field, enter ".D" in the field to be deleted.

To delete a range of fields, enter ".D" in the first and last field to be deleted. The field rangeg to be
deleted may extend beyond a single line. If an array element is deleted, the entire array is fleleted.

E Invokeextended field editindor a field. This command can be applied only to a single field ahd
not to a range of fields.

Extended field editing can also be invoked by positioning the cursor to the selected field arld
pressing PF5.

J Join fields located on consecutive lines.

The left boundary of the join operation corresponds to where the ".J" command is entered and the
right one corresponds to the cursor position.

216 Copyright © Software AG 2002

Map Editor Field Commands

Command| Function

.M Move a field or range of fields.
To move a single field, enter ".M" in the field to be moved and place the cursor at the target
position.
To move a range of fields, enter ".M" in the first and last field to be moved and place the cyrsor at
the target position.

.P[n] Edit processing rulefor a field.
Supply a parameterwith the ".P" command to indicate the priority (rank) of the processing fjule
to be edited. If necessary, the value specifiechfan be included in parentheses "()".

R Repeat (copy) a field or range of fields.
To copy a single field, enter ".R" in the field to be copied and place the cursor at the target
position.
To copy a range of fields, enter ".R" in the first and last field to be copied and place the cursor at
the target position.
Repetition is always done downwards and from left to right. Fields generated by this command are
assigned a dummy name. A valid name for each such field must be defined by using the ppst
assignment function or the extended field editing function.
Note:
Arrays cannot be copied.

.S Split (move) a line or a line range.
Enter ".S" in the field at which splitting is to begin and place the cursor at the target positiofn. The
line is divided at the position where the ".S" command was entered. The right portion is thgn
moved to the cursor position.

T Truncate (delete) a field or range of fields from a line.

Enter ".T" in the field at which truncation is to begin. If this function is used to truncate (delg
array element, the entire array is deleted.

Copyright © Software AG 2002 217

te) an

Defining Map Fields Map Editor

Defining Map Fields
The fields which are to comprise a map definition can be specified in any of the following ways:

e Defining Fields Directly on the Screen
® Selecting Fields from a User View or Data Definition
® Using System Variables in a Map Definition

Defining Fields Directly on the Screen

The fields which are to comprise the map definition are specified by entering a delimiter character followed by
the number of positions to be allocated for the field. The following characters can be used:

Character | Meaning

9 Numeric position

0 Numeric right justified

Decimal notation (numeric field only)

S Sign position (numeric field only)
HH Hexadecimal (binary) (must be entered in groups of fwo)
X Alphanumeric position

A repetition factor can also be specified in the fon for example, "X(5)" is equivalent to "XXXXX".

The following are examples of field definitions (the delimiter character can be changed as desired).

:999 3 positions, numeric

:000 3 positions, numeric right justified

:99.9 |3 positions numeric with decimal pojnt

:S9(6) |6 positions, signed numeric

:HHHH | 4 positions, hexadecimal

X 1 position, alphanumeric

:X(7) |7 positions, alphanumeric

Fields entered as shown above are assigned a dummy field name by the map editor. Each field must be assigned
a name prior to map execution by using either the extended field editing or post assignment function. Other field
formats can be specified using extended field editing.

218 Copyright © Software AG 2002

Map Editor Selecting Fields from a User View or Data Definition

Selecting Fields from a User View or Data Definition

A field can be selected from a user view or a data definition. The user view or data definition must first be
specified next to the entry "Ob:" (object) on the screen (a second user view can also be specified on the right side
of the screen).

To select a user view or data definition, first specify the object class and then the object name. Valid object
classes are:

Class| Description

Parameter Data Area

Predict Conceptual Files (only if Predict is installed)

Global Data Area

Helproutine

Local Data Area

Map

Subprogram

Program

Subroutine

<|lvw|T|Zz|2|rT|®|0O|>

View

Programs, subroutines, subprograms and helproutines can only be used if they contain a DEFINE DATA
statement. Data areas should only be used if they are STOWed.

Once a user view has been selected, it can be positioned forwards or backwards on the screen using positioning
commands (+,-,++,--/%-n).

To include a user view field in the map definition, enter a delimiter character followed by the number (left-side
view) or letter (right-side view) of the desired field. A group or items preceded by a period cannot be selected:

:3 (field 3 of the left-side view is selected)
:C (field C of the right-side view is selected)

Once all user view fields have been selected, press ENTER to show the fields on the map definition. If a selected
field contains an edit mask, this is denoted by the notation "M".

The user view field name is used as the map field name for fields selected from a user view.

Copyright © Software AG 2002 219

Using System Variables in a Map Definition Map Editor

Using System Variables in a Map Definition

Natural system variables can also be specified in a map definition. The Natural Programming Reference
documentation contains a complete description of Nasysiem variables

A system variable must be preceded by an output delimiter:
(*TIME

(*DATE
(*APPLIC-ID

220 Copyright © Software AG 2002

Map Editor Extended Field Editing

Extended Field Editing

Extended field editing is used to define field attributes.

Extended field editing is invoked by entering the line command "..E" or the field command ".E"; the following
screen is displayed:

Fild START-NAME Fmt A8

AD=MIT’ ZP= SG= HE= RIs 0

AlL= Cbh=__ CQv= Mod User
PM=__ DF= DY=

EM=

001 =-010--+emsmrmemebex030-mmemebememt e Q5 0mrbemembocmcrbon07 Qmemrbocnv

Please enter starting name B XXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit <--- --- > - -+ < > Let

It is possible to invoke extended field editing for the next or previous field in the map by pressing PF4 or PF5
respectively, or to invoke extended field editing for any field in the map by moving the cursor onto the desired
field and pressing ENTER.

Copyright © Software AG 2002 221

Extended Field Editing Map Editor

The sample screen above contains the following entries:

Entry

Explanation

Fid

Arr

The field or array name.

Field name assignment is related to the method with which the field was originally defined.

If the field was taken from a user view or data definition, it is assigned the same name as the field

in the user view or data definition.

If the field was specified as a Natural system variable, it is assigned the name of the specif
variable.

If the field is neither of the above, it is assigned a dummy name. You must assign a name {
field prior to map execution. The name of a field can be changed. However, a prefix cannot
used for a field which did not have a prefix assigned previously. To obtain a prefixed field n
select the field from a user view or data definition.

Note:
Duplicate field names are only allowed for fields defined as "output only fields".

See the sectiobefining Map Fieldgor additional information.

ed

o such a
be
ame,

Fmt

The format and length of the field.

These can be changed by overwriting the current entry.

AL/FL/NL

The length to be used when displaying the field.

Rls

The number of processing rules currently defined for the field.

P

Zero printing.

OFF indicates that zero values for the field aot to be printed.

ON indicates that zero values are to be printed.

ZP appears on the screen only if the field is numeric.

SG

Sign position for numeric fields.

OFF indicates thaho sign position is to be allocated (default).

ON indicates that a sign position is to be allocated.

SG appears on the screen only if the field is numeric.

PM

Print Mode.

C indicates that an alternative character set is to be used
(as defined by the Natural administrator).

D indicates that double-byte character set is to be used.

| indicates inverse print direction.

N indicates that it is not possible to print a hardcopy of the field content.

222

Copyright © Software AG 2002

Map Editor Extended Field Editing
Entry Explanation
DF Date format (applies only to date fields):

Determines the length of a date when converted to alphanumeric representation without ar
mask being specified:
S 8-byte representation with 2-digit year component and delimiggnsi(dd).
| 8-byte representation with 4-digit year component and no delimytgygromdyl
L 10-byte representation with 4-digit year component and delimitgys-(nmdd).

For further information, see tlsession parameter Dds described in the Natural Parameter
Reference documentation.

edit

DY

Dynamic string attributes.

The dynamic string parameter is used to define certain characters contained in the text stri
alphanumeric variable to control the attribute setting. See alsed#iseon parameter Das
described in the Natural Parameter Reference documentation.

ng of an

HE

The name of a helproutine to be assigned to the field.
For the syntax of the HE parameter, see below.

For a detailed explanation of the operands used in the HE option, sesdien parameter HiS
described in the Natural Parameter Reference documentation.

Operandlcan be the name of a helproutine specified in single quotes (’) or a variable namel.

e If a field with the name specified aperandlin the HE option exists as a field of a map, t
parameter references this field.

e

e If no field with that name exists in the map, the parameter is defined as A8 (default format

assumed) in the map.
The format/length obperand2s defined in the following way:

e If the parameter specified aperand2in the HE option is defined as a field of a map, the
parameter references this field.

e If no field with that name exists, the parameter is defined as N7 (default format assumg
the map.

Removing a parameter from the HE option implies that the parameter is also removed fromnj
map, unless it is a map field or it is associated with any other map field as a help paramete
"Starting from" value.

Non-map field parameters can be edited in the Field and Variable Definitions screen using

Entering "HE=+" opens a window, which provides sufficient space for specifying multiple
parameters to be passed to a helproutine.

pd) in

the
F or

PFo.

AD

Field attributes.

For source optimization reasons, the default values "D", "H", "F" and "W" are accepted but
retained (see alssession parameter As described in the Natural Parameter Reference
documentation).

ot

CD

Color attributes.

Copyright © Software AG 2002

223

HE Parameter Syntax: Map Editor

DATA The field was created by selecting a field from a DEFINE DATA definition.
SYS The field is a system variable.

UNDEF The field was created directly on the screen and has a dummy name.
USER The name of the field was created by extended field editing.

VIEW The field was created by selecting a field from a view (file).

Entry Explanation

(4Y) Control variable for dynamic field attributes.
The name of a variable which contains the attributes to be used for this field. This variable nust be
defined with format C in the program.
The control variable also contains a MODIFIED data tag, which indicates whether the field has
been modified following map execution.
A single control variable can be applied to several map fields, in which case the MODIFIEDQ data
tag is set if any of the fields referencing the control variable has been modified.
The control variable can be expanded up to three dimensions, for example, CONTR(*),
CONTR(*,*), CONTR(*,*,*), depending on the rank of the corresponding array.
Note:
Removing a control variable from a field implies that the control variable is removed from the
map, too, unless it is associated to any other map field.

EM Edit mask to be used for the field.

MODE Mode indicates how the field was created:

HE Parameter Syntax:

HE = operand [,{':"'!:I er:andE} [,operand.?]...fa]

Operand | Possible Structure Possible Formats | Referencing Permitted Dynamic Definition
Operand]C |S A no no

OperandZC |S A no no

224 Copyright © Software AG 2002

Map Editor Post Assignment Function

Post Assignment Function

A field which has been previously defined (in layout) directly on the screen can be assigned the field name and
field attributes of a user view field or a DEFINE DATA definition.

Note:
Duplicate field names are only allowed for fields defined as "output-only fields".

A map field which has been created using a DDM field definition can be redefined using the field definition
from a view defined in a data area.

Post assignment can be done by entering the user view field number (or letter) as shown in the view window
directly behind the delimiter of the field.

This function can only be used if the formats of the layout agrees with the field definition. N and P are
considered to be identical numeric.

This function cannot be used for view arrays if one or more dimensions of that array are smaller than the
dimensions of the array in the layout.

If a length conflict occurs, an AL/FL/NL attribute is generated to map the field definition to the layout definition
with truncation or expansion. Data are truncated when AL/FL/NL is specified.

Copyright © Software AG 2002 225

Array and Table Definition Map Editor

Array and Table Definition

The array definition function is used to define the occurrences and layout of an array.

Array definition is initiated by the field command ".A" or by issuing the line command "..E" and then marking
the desired field with the function code "A".

The table definition function is used to define the occurrences and layout of more than one array at the same
time. The arrays must begin in the same map line.

Table definition is invoked by the line command "..A".
Below you will find information on:

® Array Definition
® Table Definition

Array Definition

The upper portion of the following screen is displayed for the purpose of array definition:

Name #001 Upper Bnds 1 1 1
Dimensions Occurrences Starting from Spacing
0 . Index vertical 1 0 Lines

0 . Index horizontal 1 1 Columns
0. Index (hiv) V 1 0 ClslLs

001 =-010--+nmrmrmemebe-030-mmemebememt e Q5 0mrbememb e oe0 7 Qmemrboenv

Please enter starting name . AXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit - -+ < > Let

226 Copyright © Software AG 2002

Map Editor

Array Definition

You can specify the following:

Entry

Explanation

Upper Bnds

Indicates the upper bounds of the array; that is, the highest occurrence in (from left to rig
first, second and third dimension.

ht) the

If a field defined in a program is used to define the map array, the upper bounds of that field
(user-defined variable or database field), as defined in the program, are used; these cannot be

overwritten on the array definition screen.

If the map array is derived from a user view array or a data definition, the dimensions of the

map array must not exceed the dimensions shown in this field.

If the map array is not derived from a user view array or a data definition, the dimensions of the

map array must not exceed the dimensions as defined in the Natural program.

Dimensions

An array can have up to three dimensions. The order in which the dimensions of the array are

mapped to the map layout is determined by the values entered to the left of the Index op

Occurrences

The number of occurrences to be defined for a dimension.

Starting Fron

erands.

The starting index value for a dimension. A numeric value can be used, or a variable nafne can
be used to indicate that the actual value is supplied in the Natural program which invokes the

map definition.

If the variable is not defined otherwise as a field in the map, it is assumed to be of forma}/length

N7. If so, it can be edited using PF9 in the Field and Parameter Definition screen.

Note:

Removing a "Starting from" value from an array implies that the variable is removed from the

map, too, unless it is a map field or it is associated to any other map field as a "Starting

rom

value or help parameter. To edit "Starting from" values press PF9 in the Field and Varialple

Definitions screen.

Spacing

The number of blank lines (for vertical dimensions) or blank columns (for horizontal
dimensions) to be inserted between each dimension occurrence.

Copyright © Software AG 2002 227

Array Definition

Examples of Array Definitions

Example 1:

A one-dimensional array consisting of 10 vertical occurrences with 2 blank lines to be inserted between each

Map Editor

occurrence.
Name #001 Upper Bnds 10 1 1
Dimensions Occurrences Starting from Spacing
1. Index vertical 10_ 2 Lines
0 . Index horizontal 1 1 Columns
0. Index (hiv) V 1 0 Cls/Ls

Example 2:

Same as example 1 except that the array is to be horizontal.

Name #001 Upper Bnds 10 1 1
Dimensions Occurrences Starting from Spacing

0 . Index vertical 1 0 Lines

1. Index horizontal 10_ 1 Columns
0. Index (hiv) V 1 0 Cls/Ls

Example 3:

A two-dimensional array. The first dimension consists of 10 vertical occurrences with 1 blank line between each
occurrence. The second dimension consists of 5 horizontal occurrences with 2 blank columns between each

occurrence.
Name #001 Upper Bnds 10 5 1
Dimensions Occurrences Starting from Spacing
1. Index vertical 10_ 1 Lines
2 . Index horizontal 5 2 Columns
0. Index (h/v) V 1 0 Cls/Ls

228

Copyright © Software AG 2002

Map Editor

Example 4:

Array Definition

Same as example 3 except that the order of the dimensions is reversed.

Name #001 Upper Bnds 5 10 1
Dimensions Occurrences Starting from Spacing
2 . Index vertical 10_ 1 Lines

1. Index horizontal 5 2 Columns
0. Index (h/v) V 1 0 Cls/Ls

Example 5:

A three-dimensional array. The first dimension consists of 3 vertical occurrences with 1 blank line between each
occurrence. The second dimension consists of 5 horizontal occurrences with 2 blank columns between each
occurrence. The third dimension consists of 2 occurrences, expanded vertically within each occurrence of the

first dimension.

Name #001 Upper Bnds 3 5 2
Dimensions Occurrences Starting from Spacing

1. Index vertical 3 1 Lines

2 . Index horizontal 5 2 Columns
3. Index (h/v) V 2 0 Cls/Ls

Example 6:

An example using "Starting from". The first dimension consists of 10 vertical occurrences starting from index I.
'I' is defined in the map editor with format/length N7 by default. The second dimension consists of 5 horizontal
occurrences starting from the index 3.

Name #001 UpperBnds 10 5 1
Dimensions Occurrences Starting from Spacing
1. Index vertical 10_ | 1 Lines

2 . Index horizontal 5 3 2 Columns
0. Index (h/v) V 1 0 Cls/Ls

Example 7:

An example of making a two-dimensional display from a one-dimensional array. The array consists of 40
elements. It is displayed in two columns with 20 lines each. This is achieved by specifying 0 as the horizontal

index.
Name #001 Upper Bnds 40 1 1
Dimensions Occurrences Starting from Spacing
1. Index vertical 20_ 0 Lines
0 . Index horizontal 2_ 10 Columns
0. Index (hiv) V 1 0 Cls/Ls

Copyright © Software AG 2002 229

Table Definition Map Editor

Table Definition

A table of one or more arrays which all begin in the same map line is defined with the "..A" line command.
When you enter the "..A" line command, the following screen is invoked:

16:52:39 *reek NATURAL MAP EDITOR ***** 2001-01-17
- Array Table Definition -

Main Index: Vert. Occur. 1 Starting from Spacing O Lines

Second Index: Direction(H/V) V 0 Cls/Ls

Third Index: Direction(H/V) V 0 Cls/Ls

Name of Variable Col Dimension Size Order 2.Ind 3.Ind

(truncated) Pos Indl Ind2 Ind3 MST Occ. Occ.

#001 21 1 1

#002 251 1 1

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit - -+ Let

Note:
Applying the "..A" command to arrays which were not defined by an "..A" command but by an ".A" command,

may result in a modification or even a destruction of these arrays.

230 Copyright © Software AG 2002

Map Editor

Table Definition

The sample screen above contains the following entries:

Entry

Explanation

Main Index

The number of vertical occurrences, the starting position and the number of lines to e

skipped between each dimension occurrence.

Second Index

The direction (horizontal or vertical), the starting position and the number of lines/col
to be skipped between each dimension occurrence.

Imns

The second dimension only applies if one of the arrays has more than one dimensiof. In this

case the second dimension can be displayed either horizontally (in which case there
enough space in the line for all selected occurrences) or vertically (in which case the
be enough lines on the map to display main dimension times second dimension occt
including line spacing).

must be
fe must
rrences,

Third Index

The direction (horizontal or vertical), the starting position and the number of lines/col
to be skipped between each dimension occurrence.

The third dimension only applies if one of the arrays has more than two dimensions.

Imns

n this

case the third dimension can be displayed either horizontally (in which case there myst be

enough space in the line for all selected occurrences) or vertically (in which case the
be enough lines on the map to display main dimension times second dimension time
dimension occurrences, including line spacing).

fe must
S third

Name of Variablg

All names of field arrays contained in the table are displayed.

Col Pos

The column position in which the field is located. This is displayed for informational
purposes only.

Dimension Size

The size of the array as defined in a user view or data definition, or as in a Natural pjogram.

If the map array is derived from a user view array or data definition, the dimensions ¢
map array must not exceed the dimensions shown in this field. If the map array is no

derived from a user view array, the dimensions of the map array must not exceed the

dimensions as defined in the Natural program.

f the

Order The order in which the dimensions are to be defined. M, S and T correspond to Main
Second and Third.

2nd Ind Occ. The number of occurrences to be defined for the second index.

3rd Ind Occ. The number of occurrences to be defined for the third index.

Copyright © Software AG 2002 231

Table Definition Map Editor

Example of Table Definition:

DEFINE DATA
1 ARRAY1 (A3/1:10)
1 ARRAY?2 (A5/1:10,1:2)
1 ARRAY3 (A7/1:10,1:2,1:3)
END-DEFINE

Table definition:

16:52:39 *kkk NATURAL MAP EDITOR ****x 2001-01-17
- Array Table Definition -

Main Index: Vert. Occur. 2 Starting from Spacing 2 Lines
Second Index: Direction(H/V) V 1 Cls/Ls
Third Index: Direction(H/V) V 0 Cls/Ls
Name of Variable Col Dimension Size Order 2.Ind 3.Ind
(truncated) Pos Indl Ind2 Ind3 MST Occ. Occ.
ARRAY1 310 1 1 1

ARRAY2 32 10 2 1 12 2

ARRAY3 58 10 2 3 123 2 3

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit - -+ Let

ARRAY1 is a one-dimensional array with ten occurrences. The first two occurrences are expanded in the table.

ARRAY?2 is a two-dimensional array. The first index consists of ten occurrences and the second index consists
of two occurrences. The first two occurrences of the first index and both occurrences of the second index are
expanded in the table.

ARRAY3 is a three-dimensional array. The first index consists of ten occurrences, the second index consists of
two occurrences and the third index consists of three occurrences. The first two occurrences of the first index,
both occurrences of the second index and all three occurrences of the third index are expanded in the table.

232 Copyright © Software AG 2002

Map Editor Table Definition

Table layout:
(*DATE (*TIME
Map containing an array table of multi-dimensional arrays
ARRAY1 (1-dim.) ARRAY2 (2-dim.) ARRAY3 (3-dim.)
IXXXXXXXXXX DXOXOKKXXXXXX DXOXOCOKXXXXX Third Index
Second Index IXXXXXXXXXX (3 vertical
(2 vertical IXXXXXXXXXX occurrences)
Main Index occurrences)
(2 vertical IXXXXXXXXXX IXXXXXXXXXX
occurrences) DOOKKXXXXX
DXOOOKKKKKXK
DXOOKKXXXXX DO DO
DXOOKKKKKXK
DXOOKKKKKXK
DOOXKXXXXXX DOOKXXXXXX
DXOOKKKKKXK
DXOOKKKKKXK
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
Help Mset Exit Test Edit Top - + Full < > Let

The table is defined as a collection of arrays which share the following characteristics:

® The number of occurrences of the main index must be the same for each array of the table. The main index
is always expanded vertically.

e All elements of a specific index must be placed in the same line. Thus, spacing between the elements of a
specific index depends on the array with the largest dimension.

Copyright © Software AG 2002 233

Processing Rules Map Editor

Processing Rules

e Field-Related Processing Rules
® Function-Key-Related Processing Rules
® Processing Rule Editing

Field-Related Processing Rules
Three types of processing rules can be defined:

® Inline processing rules
® Free Predict rules
e Automatic Predict rules

Inline processing rules are defined within a map source and do not have a name assigned. The availability of
Predict is not required for inline rules.

Free Predict rules have a hame assigned and are stored in Predict.

To edit a free processing rule, enter the rule during map creation and assign a name to it. Inline rules can become
Predict rules (and vice versa) by assigning/removing the rule name.

Predict automatic rules apply to database fields and are defined by the Predict administrator. When a field is
created by selecting it from a view or a data definition, and if the field is a database field, all automatic rules for
that field are linked to the map definition. All automatic rules are concatenated and treated as a single map rule.

The rank of the automatic rules is defined in the map settings (default 1).

Automatic rules cannot be modified using the map editor. They can, however, be assigned a different rank either
by using the command "R=or by just overwriting the old rank.

If Predict rules are modified subsequently by the Predict administrator, or new automatic rules are linked to a
database field, or automatic rules are removed, it is sufficient to recatalog the map.

Note:
If a field with linked Predict processing rules is renamed, the rules are lost and must be linked again.

234 Copyright © Software AG 2002

Map Editor Function-Key-Related Processing Rules

An ampersand "&" within the source code of a processing rule is dynamically substituted with the fully qualified
name of the field using the rule; this does not apply if the rule is used by individual array elements.

Example:

IF & ="" REINPUT 'ENTER NAME’ MARK *&

The field name notatior&: field-namé within the source code of a processing rule allows you to have
DDM-specific rules that cross-check the integrity of values between database fields, without having to explicitly
qualify the fields with a view name. Aigld-nameyou specify the name of the database field as defined in the
DDM, and at compilation time, Natural dynamically qualifies the field by replacing the "&" with the
corresponding view name. This allows you to use the same processing rule for specific fields, regardless of
which view the fields are taken from.

Function-Key-Related Processing Rules
Two types of function-key-related processing rules can be defined:

® Inline processing rules
® Free Predict rules

Function-key-related processing rules can be used to assign activities to program sensitive function keys during
map processing. For function keys which already have a command assigned by the program, this command is
executed without any rule processing.

Example:

IF *PF-KEY = 'PF3'
ESCAPE ROUTINE
END-IF

When this rule is executed, map processing is terminated without further rule processing.

Copyright © Software AG 2002 235

Processing Rule Editing Map Editor

Processing Rule Editing

Processing-rule editing is invoked by the field command ".P", or by issuing the line command "..E" and then
placing the function code "P" next to the field for which processing rule editing is to be performed. PF-key
processing rule editing is invoked by the command "..P".

A parameter can be usedrfPto indicate the rank (priority) of the processing rule to be defined/edited. A field

can have up to 100 processing rules (rank 0 to 99). At map execution time, the processing rules are executed in
ascending order by rank and screen position of the field. PF-key processing rules are always assumed to have the
first screen position.

For optimum performance, the following assignments are recommended when assigning ranks to processing
rules:

Rank | Processing Rule

0 Termination rule

1-4 | Automatic rules

5-24 |Format checking

25 - 44 Value checking for individual field$

45 - 64| Value cross-checking between fie|ds

65 - 84| Database access

85 - 99| Special purpose

How to Select a Rule for Editing
If you enter the field command ".P*" in a map field, you obtain a list of all processing rules defined for the field.

If you enter the line command "..P*" in any map line, you obtain a list of all function-key-related processing
rules defined for the map.

On each list, the Predict rules are identified by their names, the inline rules by their first three source code lines.
From each list you can select a rule for editing by entering its rank.

236 Copyright © Software AG 2002

Map Editor Processing Rule Editing

The screen for processing rule editing (with a processing rule example) is shown below:

Variables used in current map MOD
MODTXT(A3) U
FVAR(A75/1:6) U
FTYP(A1/1:6) u
RULEMODE(A6) U
RULE-NAME(A32) D
FIELDAN(AS5) D
Rule Field FULCB3.CBCOM
> >+Rank0 S1 L1 Struct Mode
ALL ...+...10...+....20...+....30...+....40...+....50...+....60...+....70..
0010 *

0020 IF & EQ MASK('?)

0030 REINPUT USING HELP

0040 END-IF

0050 *

0060

0070

0080

0090

0100
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Mset Exit Test - - + Full Sc= Let

During processing rule editing you can switch between split-screen and full-screen mode using PF9 or
SPLIT/SPLIT E command. The upper half of the split screen displays the definitions of all map fields (except
system variables). This display can be positionespij-screen commands

The source code used to define the processing rule is entered/edited in the same way as with the Natural program
editor.

Copyright © Software AG 2002 237

Processing Rule Editing Map Editor

While working in the processing-rule editor, processing rules can be edited by entering the following commands
in the editor command line:

Command Function

ADD[(n)] This command addsempty lines in source code.

See the more detailed description of the ADD command in the s&atitor
Commands

CHANGE ’string? string2 | This command scans for the value enterestr@sgl and replaces each such value
found with the value entered sising2

CHECK This command checks the rule.
CLEAR This command clears the edit area (including the line markers "X" and "Y").
DX, DY, DX-Y This command deletes the X-marked line; or the Y-marked line; or the blocK of

lines delimited by "X" and "Y".

EX, EY, EX-Y This command deletes source lines from the top of the source area to, but rjot

including, the X-marked line; or from the source line following the Y-marked|line
to the bottom of the source area; or all source lines in the source area excluding
the block of lines delimited by "X" and "Y".

EXIT This command terminates the rule editing function and return to map editing.

P This command positions forward to the next rule defined for the field.

p* This command selects a rule from the selection menu.

Prr This command selects the rule with rank

P=rr This command changes the rank of a processing rule tarank

POINT This command positions the line in which the line command ".N" was entergd to
the top of the current screen.

RESET This command deletes the current X and/or Y line markers and any marker
previously set with the line command ".N".

SAVE name This command saves a rule as copycode with the name

SCAN ['scan-valug This command scans for data in the source area. Entering SCAN without any

parameter displays the SCAN menu. Entering SC#ddn-valuéresults in a sca|
for scan-value

=)

SCAN = [+|1] This command scans for the next occurrence of the scan value. The directign of
the scan operation is determined by the setting of the direction indicator.

See the more detailed description of the SCAN commands in the dedtion
Commands

SHIFT [-]+nn] This command shifts each source line delimited by the X and Y markers to the left
or right."nn" represents the number of characters the source line is to be shifted.
Comment lines are not shifted.

SHIFT - - This command shifts each source line delimited by the X and Y markers to the
leftmost position. Comment lines are not shifted.
SHIFT ++ This command shifts each source line delimited by the X and Y markers to the

rightmost position (maximum 99 positions). Comment lines are not shifted.

238 Copyright © Software AG 2002

Processing Rule Editing

Map Editor
Command Function
SPLIT [END] This command switches between split-screen mode and full-screen mode ($ee also
the sectiorSplit-Screen Commanyls
TEST This command tests a map.
UNLINK This command unlinks an inline or Predict free rule from the field.

Note:
To select a rule from all free Predict rules, enter a "?" in the rule name field of the processing rule editing screen.

Copyright © Software AG 2002 239

Processing Rule Editing Map Editor

Editor Commands for Positioning

Editor commands for positioning are also entered in the command line of the rule editor. The following
commands are available:

Command Function

+P Position forwards one page.

+

-P Position backwards one page.

+H Position forwards half a page.

-H Position backwards half a page.

TOP Position to top of rule.

BOTTOM Paosition to bottom of rule.

++

+nnnn Position forwardsinnnlines (maximum 4 digits).
-nnnn Position backwardsnnnlines (maximum 4 digits).
nnnn Position to linennnn

X Position to the line marked with "X".

Y Position to the line marked with "Y".
SPLIT[-|[4nn|++| - -]| Use of positioning commands in split screen.

In split screen mode, all positioning commands must be preceded by an "S" (for Split Screen). See further
information in the sectioBplit Screen Commands

240 Copyright © Software AG 2002

Map Editor

Processing Rule Editing

Line Commands

In addition to the editor commands, the following line commands can be used when editing a processing rule:

Command

Function

.C(nnnn)

Copies the line in which the command was entered.

.CX(hnnn
.CY(hnnn

Copies the X-marked or the Y-marked line. See also the commands ".X" and ".Y" in th
following section.

.CX-Y(nnnn

Copies the block of lines delimited by the X and Y markers.

If the direction indicator is "+", the copied lines are placed after the line in which the
command was entered. If the direction indicator is "-", the copied lines are placed befqd

line in which the command was entered.

re the

.D(nnnn

Delete line or lines. The default is 1 line.

A(n)

Insertsn empty lines. With the next ENTER, lines that are left blank are eliminated aga

.I(obj,ssssnhnnn

Inserts an object contained in the current library or in the steplib into the source.

The "sssS entry can be used to indicate the line number at which the insert operation i
begin.

The 'nnnri' entry can be used to indicate the number of lines to be inserted.

See the more detailed description of the .l line commands in the seicib@ommands

to

Joins the current line with the next line.

If the resulting line length is greater than the length of the editor screen line, the line is
marked with "L" and must then be separated again using the ".S" command (see belo
before it can be modified.

Undoes all modifications that have been made to the line since the last time ENTER W
pressed.

as

MX .MY

Moves the X-marked or the Y-marked line. See also the commands ".X" and ".Y" belo

MX-Y

Moves the block of lines delimited by the X and Y markers.

If the direction indicator is set to "+", the moved lines are placed after the line in which
command was entered. If the direction indicator is set to "-", the moved lines are place
before the line in which the command was entered.

the

Positions the line marked by this command to the top of the screen.

n

Splits the line at the position marked by the cursor.

Insertsn empty lines.

With the next ENTER, lines that are left blank are eliminated again.

Marks a line, or the beginning of a block of lines, to be processed.

Marks a line, or the end of a block of lines, to be processed.

Note:
If both the commands ".X" and ".Y" are applied to one line, it is treated as being marke

d with

"X" and with "Y"; the line marker actually shown to reflect this status is a "Z".

Copyright © Software AG 2002

241

	Cover Page
	page 2

	Table of Contents
	User's Guide for Mainframes - Overview
	Fundamentals
	Components of Natural
	Invoking Natural
	Terminating Natural
	Terminating an Online Session
	Terminating a Batch Session

	Using the ENTER Key
	Online Help System
	Help on Natural System Messages

	Navigating within Natural
	Invoking a Function from a Menu
	Invoking a Function with a Command
	Leaving a Function
	PF Keys

	Main Natural Menus
	Main Menu
	Development Functions
	Changing the Library
	Programming Modes
	Development Environment Settings
	Maintenance and Transfer Utilities
	Debugging and Monitoring Utilities
	Example Libraries
	Other Products

	Natural Editors
	Terminal Commands
	Asterisk Notation

	Tutorial - Getting Started with Natural
	Session 1 - Creating a Program and a Map
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Step 13
	Step 14
	Step 15
	Step 16
	Step 17
	Step 18
	Step 19

	Session 2 - Creating a Local Data Area
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Session 3 - Creating a Global Data Area
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Session 4 - Creating an External Subroutine
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Session 5 - Editing a Map
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12

	Session 6 - Invoking a Subprogram
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11

	Tutorial - Using the Map Editor
	Components of the Map Editor
	Invoking the Map Editor
	Session 1 - Designing a Map, Line and Field Commands
	Session 2 - Processing Rules
	Session 3 - Extended Field Editing
	Session 4 - INPUT USING MAP
	Session 5 - WRITE USING MAP, Fields from a View

	Designing User Interfaces - Overview
	Screen Design
	Control of Function-Key Lines - Terminal Command %Y
	Format of Function-Key Lines
	Other Display Options

	Positioning of Function-Key Lines
	Cursor-Sensitivity

	Control of the Message Line - Terminal Command %M
	Positioning the Message Line
	Message Line Protection
	Message Line Color

	Assigning Colors to Fields - Terminal Command %=
	Outlining - Terminal Command %D=B
	Statistics Line/Infoline - Terminal Command %X
	Statistics Line
	Infoline

	Windows
	What is a Window?
	Positioning on the Physical Screen
	Positioning on the Logical Page

	DEFINE WINDOW Statement
	INPUT WINDOW Statement
	Message and Function-Key Lines
	Multiple Windows

	Standard/Dynamic Layout Maps
	Dynamic Layout Maps

	Multilingual User Interfaces
	Language Codes
	Defining the Language of a Natural Object
	Defining Languages with Alphabetical Map Codes

	Defining the User Language
	Referencing Multilingual Objects
	Programs
	Error Messages
	Edit Masks for Date and Time Fields

	Skill-Sensitive User Interfaces

	Dialog Design
	Field-Sensitive Processing
	*CURS-FIELD and POS†field-name‡

	Simplifying Programming
	System Function POS

	Line-Sensitive Processing
	System Variable *CURS-LINE

	Column-Sensitive Processing
	System Variable *CURS-COL

	Processing Based on Function Keys
	System Variable *PF-KEY

	Processing Based on Function-Key Names
	System Variable *PF-NAME

	Processing Data Outside an Active Window
	System Variable *COM
	Example Usage of *COM
	Positioning the Cursor to *COM - %T* Terminal Command

	Copying Data from a Screen
	Terminal Commands %CS and %CC
	Selecting a Line from Report Output for further Processing

	Statements REINPUT/REINPUT FULL
	Object-Oriented Processing
	Natural Command Processor

	Editors - General Information
	Object Names
	Split-Screen Mode
	Split-Screen Commands

	Editor Profile
	General Information
	Additional Options
	Editor Defaults
	General Defaults
	Color Definitions
	Direct Commands
	User Exit USR0070P
	Exit Profile Maintenance

	Program Editor
	Invoking the Program Editor
	Top Information Line
	Bottom Information Line
	Editor Command Line
	Editing a Program
	Multiple Functions
	Dynamic Conversion from Lower to Upper Case

	Editor Commands
	Editor Commands for Positioning
	Line Commands
	Special PF-Key Functions
	Cursor-Sensitive Commands
	The SCAN Commands
	The SPLIT Command
	The EDIT and LIST System Commands

	The Exit Function

	Data Area Editor
	Invoking the Data Area Editor
	Top Information Line
	Bottom Information Line
	Editor Command Line
	Editing a Data Area
	Editor Commands
	Line Commands
	Edit Fields
	Special Commands Available within the Edit Fields Function
	The ".E" Line Command with Control Variables

	The Exit Function
	Defining Globally Unique IDs in the Local and Global Data Area Editors

	Map Editor
	Components of the Map Editor
	Summary of Map Creation
	Step 1
	Step 2
	Step 3
	Step 4

	Invoking the Map Editor
	Overview of Functions
	Field and Variable Definitions
	Edit Map
	Initialize a New Map
	Initialize a New Help Map
	Maintenance of Profiles & Devices
	Save Map
	Test Map
	Stow Map

	Initializing a Map
	Delimiters
	Format
	Context
	Filler Characters

	Editing a Map
	Commands and Function Keys for Positioning
	Line Commands
	Field Commands

	Defining Map Fields
	Defining Fields Directly on the Screen
	Selecting Fields from a User View or Data Definition
	Using System Variables in a Map Definition

	Extended Field Editing
	HE Parameter Syntax:

	Post Assignment Function
	Array and Table Definition
	Array Definition
	Examples of Array Definitions

	Table Definition
	Example of Table Definition:
	Table definition:
	Table layout:

	Processing Rules
	Field-Related Processing Rules
	Function-Key-Related Processing Rules
	Processing Rule Editing
	How to Select a Rule for Editing
	Editor Commands for Positioning
	Line Commands

